

Computer Systems

Software Department

PYTHON APPLIED SOFTWARE DEVELOPMENT
Syllabus

Requisites of the Course

Cycle of Higher
Education

First cycle of higher education (Bachelor’s degree)

Field of Study 12 Information Technologies
Speciality 121 Software engineering
Education Program Software Engineering of Multimedia and Information Retrieval Systems
Type of Course Elective
Mode of Studies full-time
Year of studies,semester 3 year (6 semester)
ECTS workload 36 hours for lectures, 18 hours for practicals, 66 hours for self-study
Testing and assessment Credit test
Course Schedule Сlasses by the timetable http://rozklad.kpi.ua/
Language of Instruction English

Course Instructors
Lecturer: PhD, Associate Professor, Dmytro Novak, novak.knutd@gmail.com
Teacher of computer workshop: PhD, Associate Professor, Dmytro Novak,
novak.knutd@gmail.com

Access to the course Google classroom: Access is given to registered students.

Outline of the Course

1. Course description, goals, objectives, and learning outcomes

The study of the discipline "Python Applied Software Development" allows students to develop the
competencies necessary for solving practical problems of professional and scientific activities related to
the preparation and development of software in the Python language.

The purpose of studying the discipline "Python Applied Software Development" is to provide students
with knowledge and practical skills in the field of software development using the Python language.

The subject of the discipline "Python Applied Software Development" is study the basics of programming
in the Python language and use it to create various software products and solve practical problems.

The study of the discipline "Python Applied Software Development" contributes to the formation of the
following professional competence (PC) in students according to the educational program:

PC8 Ability to apply fundamental and interdisciplinary knowledge to successfully solve software
engineering problems.

The study of the discipline "Fundamentals of computer systems and networks" contributes to the
formation of the following program learning outcomes (PLO) for students according to the educational
program:

PLO01 To analyze, purposefully search and select the necessary information and reference resources and
knowledge to solve professional problems, taking into account modern advances in science and
technology.

PLO07 To know and to apply in practice the fundamental concepts, paradigms and basic principles of
the functioning of language, instrumental and computational tools of software engineering.

http://rozklad.kpi.ua/
mailto:novak.knutd@gmail.com
mailto:novak.knutd@gmail.com

PLO18 To know and be able to apply information technology of processing, storage and transmission of
data.

2. Prerequisites and post-requisites of the course (the place of the course in the scheme of
studies in accordance with curriculum)

Successful study of the discipline "Python Applied Software Development" is preceded by the study of
disciplines: "Programming basics", "Programming" and "Databases" of the curriculum for bachelors in the
specialty 121 Software Engineering.

The theoretical knowledge and practical skills obtained during the mastering of the discipline "Python
Applied Software Development" contribute to the successful completion of course projects and bachelor's
thesis.

To successfully master the discipline requires a basic level of English not less than A2.

3. Content of the course

Discipline "Python Applied Software Development" involves the study of the following topics:

Topic 1. Fundamentals of Python programming.

Computer Workshops 1-3.

Topic 2. Peculiarities of software development in Python.

Credit test.

4. Coursebooks and teaching resources

Basic references:

1. Sutor R. S. Dancing with python: Learn python software development from scratch and get started
with quantum computing. – Packt Pub. 2021, 744 p.

2. Slatkin B. Effective Python. – Addison-Wesley Professional. 2019, 480 p.

Additional references:

3. Flask. Electronic resource. Access mode: https://www.tutorialspoint.com/flask/index.htm
4. Pillai A. B. Software architecture with Python. – Packt Publishing Ltd. 2017, 619 p.
5. Bird A., Han L. C., Jiménez M. C., Lee G., Wade C. The The Python Workshop: Learn to code in

Python and kickstart your career in software development or data science. – Van Haren Publishing.
2019, 608 p.

6. Wilkes M. Advanced Python Development: Using Powerful Language Features in Real-World
Applications (1st ed.). – Apress. 2020, 628 p

7. Shaw B., Badhwar S., Bird A. Web Development with Django. Van Haren Publishing. 2021, 826 p.

Educational content

5. Methodology

№ Type of training session Description of the lesson

Topic 1. Fundamentals of Python programming.

1 Lecture 1. Python basics. History and features of the Python language. Basic
concepts of the Python language.

2 Lecture 2. Data types and structures. Logical operators. Cycles. Lists. Tuples Rows
Dictionaries.

3 Lecture 3 Exception handling and
data logging.

Exceptions Exception generation in Python. Own
exceptions. Logging in. Data logging. Exception
logging.

4 Lecture 4. Working with functions. Functions. Arguments of functions. Function tests.
Functions as objects. Function scope. Local and global
variables. Anonymous functions. Locking. Decorators.

5 Computer Workshop 1. Working
with lists, dictionaries, loops and built-
in functions.

Objective: Demonstrate your skills in working with
lists and dictionaries, learn basic methods for working
with them; learn types of loops in Python; consider the
main built-in functions of the Python programming
language and learn how to work with them.

6 Lecture 5. Modules and packages. Python code in normal and interactive mode.
CPython interpreter. Modules in Python. Using
packages in Python.

7 Computer Workshop 2. Working
with iterators and generators.

Objective: learn the concepts of iterator and
generator in Python, as well as their advantages;
familiarize yourself with their use.

8 Lecture 6. Work with files. Writing data to a file. Creating and deleting
directories. Statement with. Structured text files.
Characteristics of XML and JSON formats.

9 Computer Workshop 3. Working
with files and formatting data in JSON
format.

Objective learn how to work with files using functions
from the standard library; consider the concept of text
parsing and familiarize yourself with its use in Python;
explore the possibilities of interaction of Python with
the JSON data storage format.

Topic 2. Peculiarities of software development in Python.

10 Lecture 7. An introduction to object-
oriented programming in Python.

Abstraction, encapsulation, inheritance and
polymorphism. Creating a class and its attributes.

11 Lecture 8. Fundamentals of object-
oriented programming in Python.

Object methods and class methods. Encapsulation
(Public, Protected, Private). Inheritance and
polymorphism. Multiple inheritance. Class hierarchy
design and object class.

12 Lecture 9. Deep learning of object-
oriented programming in Python.

Mixins in Python. Aggregation. Iterators and
generators. Coroutines Singleton. Metaclasses.
Dynamic creation of classes.

13 Lecture 10. Unit testing in Python. Frameworks for autonomous testing in Python. The
main structural elements of unit-test. Command line
interface. Downloading and running tests. Testing by
categories. Combination of tests.

14 Lecture 11. Introduction to Flask. Contexts in Flask. Request processing. Server
response. Interception of requests. Templates.

15 Lecture 12. Flask basics. Basics of the Jinja Template Builder. Comments.
Declaration of variables. Filters. Macros. Screening.
Creating URLs in Flask. Working with static files in
Flask. Automatic import of objects.

16 Lecture 13. Deep learning of Flask. Working with forms in Flask. Forms in the console.
Form visualization. Work with form confirmation.
Configuring cookies in Flask. Creation of models.
Deploying a Flask application.

17 Lecture 14. The Numpy library Arrays. Operations on arrays. Array modification.
Examples of working with Numpy.

19 Lecture 15. Matplotlib library Basic graphics commands. Text parameters of
graphs. Graphics window architecture. Placement of

graphs. Ways to display the legend. Saving graphs to a
file.

20 Lecture 18. Final lecture. Credit Test.

6. Self-study

The discipline "Python Applied Software Development" is based on independent preparation for
classroom classes on theoretical and practical topics.

№ The name of the topic that is submitted for independent
study

Hours of
study

References

1 Preparing for Lectures 27 [1-7]

2 Preparing for Computer Workshops 1-3. 21 [1, 2]

3 Preparing for Test 1 (Topic 1). 4 [1-4]

4 Preparing for Test 2 (Topic 2). 4 [2-7]

5 Preparing for Credit Test. 10 [1-7]

Policy and Assessment

7. Course policy

• Attendance at lectures is mandatory.
• Attendance at computer workshops can be sporadic and if you need to defend a computer workshop.
• Rules of conduct in the classroom: activity, respect for those present, turning off the phones.
• Adherence to the policy of academic integrity.
• Rules for protecting the work of the computer workshop: the work should be done according to the

option of the student, which is determined by his number in the group list.
• The rules for assigning penalty points are as follows.

8. Monitoring and grading policy

During the semester, students complete 3 computer workshops. Maximum number of points for each
computer workshop: 20 points.

Points are awarded for:
- quality of computer workshop: 0-8 points;
- answer during the defense of the computer workshop: 0-8 points;
- timely submission of work to the defense: 0-4 points.
Maximum number of points for performing and defending computer workshops:
20 points × 3 comp. work. = 60 points.

The task for the modular test consists of 5 questions - 3 theoretical and 2 practical. The answer to each

theoretical question is evaluated by 8 points, the answer to the practical question is evaluated by 8
points.

Criteria for evaluating each theoretical question of the module test:
7-8 points - the answer is correct, complete, well-argued;
4-7 points - there are minor errors in the answer;
1-3 points - there are significant errors in the answer;
0 points - no answer or the answer is incorrect.

Criteria for evaluating the practical question of modular control work:
7-8 points - the answer is correct, complete, well-argued;
4-7 points - there are minor errors in the answer;
1-3 points - there are significant errors in the answer;
0 points - no answer or the answer is incorrect.
Maximum number of points for each modular test:
8 points × 3 theoretical questions + 8 points × 2 practical questions = 40 points.

The rating scale for the discipline is equal to:
R = Rs = 60 points + 40 points = 100 points.
According to the description: R = Rcomp.work + RCredit test = 60+ 40 points = 100 points

Calendar control: conducted twice a semester as a monitoring of the current state of compliance with

the requirements of the syllabus.
At the first attestation (8th week) the student receives "credited" if his current rating is not less than

50% of the maximum number of points that the student can receive before the first attestation.
At the second attestation (14th week) the student receives "credited" if his current rating is not less

than 50% of the maximum number of points that the student can receive before the second attestation.

Semester control: Credit Test.

Conditions of admission to semester control:
With a semester rating (Rs) of at least 60 points and enrollment in all computer workshops, the

student receives the final test"automatically" according to the table (Table of correspondence of rating
points to grades on the university scale).

Prerequisite for admission to the final test is the implementation and defense of a computer workshop.
The final performance score or the results of Final test the Fail/ Pass are adopted by university grading

system as follows:

Score Grade
100-95 Excellent
94-85 Very good
84-75 Good
74-65 Satisfactory
64-60 Sufficient

Below 60 Fail
Course requirements are not met Not Graded

Syllabus of the course

Is designed by teacher PhD, Associate Professor, Dmytro Novak

Adopted by Computer Systems Software Department (protocol № 8 from 25.01.23)

Approved by the Faculty Board of Methodology (protocol № 6 from 27.01.23)

