

 Кафедра програмного
забезпечення комп’ютерних
систем

CROSS-PLATFORM PROGRAMMING

Working program of the academic discipline (Syllabus)
Details of the educational component

Level of higher education First (Bachelor)
Branch of knowledge 12 Information Technologies
Specialty 121 Software Engineering
Educational program Software Engineering of Multimedia and Information-Retrieval Systems
Status of the educational
component

Elective

Form of education Full-time
A year of training 3rd year of training, 6th semester
Scope of the discipline Lectures: 36 hours, laboratory work: 18 hours, independent work: 66 hours.
Semester control/ control
measures

Credit, modular control work, calendar control

Schedule of classes According to the schedule for the autumn semester of the current academic year
(rozklad.kpi.ua)

Language of instructions English
Information about
head of the course /
teachers

Lecturer: Ph.D., associate professor, V. V. Tsurkan, v.v.tsurkan@gmail.com
Laboratory work: Ph.D., associate professor, V.V. Tsurkan, v.v.tsurkan@gmail.com

Course location Google classroom. Access is given to registered students.

Program of educational component

1. Description of the educational component, its purpose, subject of study and learning outcomes

Studying the discipline "Cross-platform Programming" allows students to develop the competencies
necessary for solving practical tasks of professional activities related to the development of cross-platform
software.

The purpose of studying the discipline "Cross-platform Programming" is the formation of students' abilities
to independently design and develop cross-platform software.

The subject of the discipline "Cross-platform programming" is methods, means of modeling and
development of cross-platform software.

The study of the discipline "Cross-platform programming" contributes to the formation of students of
professional competences (PC) necessary for solving practical tasks of professional activities related to the
development, improvement and operation of software:
PC01 Ability to identify, classify and formulate software requirements.
PC02 Ability to participate in software design, including its structure, behavior and functioning processes modeling
(formal description).
PC03 Ability to develop software systems architectures, modules and components.
PC05 Ability to follow specifications, standards, rules and recommendations in the professional field during the life
cycle processes implementation.
PC06 Ability to analyze, select and apply methods and tools to ensure information security (including
cybersecurity).

PC11 Ability to implement phases and iterations of the life cycle of the software systems and information
technology based on appropriate models and approaches to software development.
PC14 Ability to algorithmic and logical thinking.
PC21 Ability to identify, analyze and document software requirements for multimedia and information retrieval
systems.

The study of the discipline "Cross-Platform Programming" contributes to the formation in students of the following
program learning outcomes (PLO) according to the educational program:
PLO03 To know the software life cycle basic processes, phases and iterations.
PLO05 To know and apply relevant mathematical concepts, domain methods, system and object-oriented analysis
and mathematical modeling for software development.
PLO06 Ability to select and use the appropriate task of software development methodology.
PLO09 To be able to use collecting, formulating and analyzing software requirements methods and tools.
PLO10 To conduct a pre-project survey of the subject area, system analysis of the design object.
PLO11 To select initial data for design, guided by formal methods of describing requirements and modeling.
PLO12 To apply effective approaches to software design in practice.
PLO15 To choose programming languages and development technologies to solve the problems of creating and
ma intaining software.
PLO17 To be able to apply methods of component software development.
PLO21 To know the tools, analyze, select, skillfully apply the information security (including cybersecurity) and
data integrity means in accordance with the applied tasks and software systems.
PLO23 To be able to document and present the software development results.

2. Pre-requisites and post-requisites of the discipline (place in the structural and logical scheme of
training according to the relevant educational program)

The successful study of the discipline "Cross-Platform Programming" is preceded by the study of the disciplines
"Fundamentals of Programming", "Algorithms and Data Structures", "Fundamentals of Computer Systems and
Networks", "Components of Software Engineering", "Databases" and "Programming" of the bachelor's training
plan in the specialty 121 Software engineering.

The theoretical knowledge and practical skills obtained during the mastering of the discipline "Cross-Platform
Programming" ensure the successful implementation of course projects and master's theses in the specialty 121
Software engineering.

3. Content of the academic discipline
The discipline "Cross-Platform Programming" involves the study of the following topics:
Topic 1. Specification of cross-platform software requirements.
Topic 2. Creating a logical structure of cross-platform software.
Topic 3. Creation of the physical structure of cross-platform software.
Topic 4. Implementation of the physical structure of cross-platform software.
Modular control work
Test

4. Educational materials and resources

Basic literature:
1. OMG® Unified Modeling Language® (OMG UML®). Version 2.5.1. URL: https://www.omg.org/
spec/UML/2.5.1/PDF (accessed on: 01.06.2022).
2. OMG Systems Modeling Language (OMG SysML™). Version 1.6. URL: https://sysml.org/.res/docs/
specs/OMGSysML-v1.6-19-11-01.pdf (accessed on: 01.06.2022).
3. Percival H., Gregory B. Architecture Patterns with Python: Enabling Test-Driven Development, Domain-Driven
Design, and Event-Driven Microservices. Sebastopol, USA : O’Reilly Media, 2020. 304 p.
4. Aniche M. Effective Software Testing: A developer’s guide. Shelter Island, USA: Manning, 2022. 328 p.

https://www.omg.org/
https://sysml.org/.res/docs/specs/OMGSysML-v1.6-19-11-01.pdf
https://sysml.org/.res/docs/specs/OMGSysML-v1.6-19-11-01.pdf
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Harry+Percival&text=Harry+Percival&sort=relevancerank&search-alias=books
https://www.amazon.com/Bob-Gregory/e/B088HBRYLR/ref=dp_byline_cont_book_2
https://www.amazon.com/Mauricio-Aniche/e/B09VXMLY86/ref=dp_byline_cont_book_1

5. Threat Modeling. Process. URL: https://owasp.org/www-community/Threat_Modeling_Process (accessed on:
01.06.2022).
6. Shostack A. Threat Modeling: Designing for Security. Indianapolis: John Wiley & Sons, 2014. 590 p.
7. ISO/IEC 27005:2018. Information technology. Security techniques. Information security risk management. [Valid
from 2018-06-10]. URL: https://www.iso.org/standard/75281.html (accessed on: 01.06.2022).

 Additional literature:
8. Dennis A., Wixom B., Tegarden D. Systems Analysis and Design : An Object-Oriented Approach with UML.
Hoboken, USA : Wiley, 2020. 544 p.
9. Holt J, Perry S. SysML for Systems Engineering: A model-based approach (Computing and Networks). London,
United Kingdom : The Institution of Engineering and Technology, 2019. 880 p.
10. Python documentation. URL: https://docs.python.org/3/ (accessed on: 01.06.2022).
11. Myers G., Sandler C., Badgett T. The Art of Software Testing. Hoboken, USA : Wiley, 2011. 256 p.
12. Threat Modeling. URL: https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling (accessed
on: 01.06.2022).
13. Tarandach I., Coles M. J. Threat Modeling. A Practical Guide for Development Teams. Sebastopol: O’Reilly
Media, 2020, 201 p.
14. MITER ATT&CK. URL: https://attack.mitre.org/ (accessed on: 01.06.2022).

5. Educational content
1. Methods of mastering an educational discipline (educational component)
№ Type of training session Description of the training session

Topic 1. Introduction to software security

1 Lecture 1. Course content,
introduction to cross-

platform programming

Overview of course content. The concept of cross-platform as a property of
software. Varieties of cross-platform software. Life cycle of cross-platform software

development. Ways and means of achieving cross-platform software.

Task on self-study: item 6 No. 1.

2 Lecture 2. Methods of
determining functional
requirements for cross-

platform software

Concept of functional requirements for cross-platform software. The process of
determining functional requirements for cross-platform software. Stages of

determining functional requirements for cross-platform software. Presentation of
options for using cross-platform software.

Assignment on self-study: item 6 No. 2.

3 Laboratory work 1.
Specification of functional

requirements for cross-
platform software

Task: to specify functional requirements for cross-platform software.

Assignment on self-study: item 6 No. 3.

4 Lecture 3. Methods of
determining non-

functional requirements
for cross-platform

software

Security as a non-functional requirement for cross-platform software. The process
of determining non-functional requirements for cross-platform software. Stages of

determining non-functional requirements for cross-platform software.

Assignment on self-study: item 6 No. 4.

5 Lecture 4. Methods of
modeling security threats

of cross-platform
software

The concept of cross-platform software security threat model. The process of
modeling security threats of cross-platform software. Stages of modeling security

threats of cross-platform software. Characteristics of the STRIDE-DREAD combined
method. Characteristics of the method of assessing the risks of information security

and cyber security.

https://owasp.org/www-community/Threat_Modeling_Process
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Alan+Dennis&text=Alan+Dennis&sort=relevancerank&search-alias=books
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Barbara+Wixom&text=Barbara+Wixom&sort=relevancerank&search-alias=books
https://www.amazon.com/s/ref=dp_byline_sr_book_3?ie=UTF8&field-author=David+Tegarden&text=David+Tegarden&sort=relevancerank&search-alias=books
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Jon+Holt&text=Jon+Holt&sort=relevancerank&search-alias=books
https://www.amazon.com/Simon-Perry/e/B003XF9ZSC/ref=dp_byline_cont_book_2
https://docs.python.org/3/
https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://attack.mitre.org/

Task on self-study: item 6 No. 5.

6 Laboratory work 2.
Specification of non-

functional requirements
for cross-platform

software

Task: to specify non-functional requirements (security) for cross-platform software.

Assignment on self-study: item 6 No. 6.

Topic 2. Methods of modeling software security threats

7 Lecture 5. Static logical
structure of cross-
platform software

Concept of static logical structure of cross-platform software. Ways of presenting
the static logical structure of cross-platform software. Representation of entities of

the subject area by classes.

Assignment on self-study: item 6 No. 7.

8 Lecture 6. Presentation of
the static logical structure

of cross-platform
software

Definition of classes, their attributes and methods (operations). Types of relations
between classes. Definition of relations between classes. Graphical notation of

representation of classes and relations between them. Examples of representation
of classes and relations between them.

Assignment on self-study: item 6 No. 8.

9 Laboratory work 3.
Creating a static logical

structure of cross-
platform software

Task: to create a static logical structure of cross-platform software.

Assignment on self-study: item 6 No. 9.

10 Lecture 7. Dynamic logical
structure of cross-
platform software

Concept of dynamic logical structure of cross-platform software. Ways of
presenting the dynamic logical structure of cross-platform software. Cross-platform

software behavior specification.

Assignment on self-study: item 6 No. 10.

11 Lecture 8. Presentation of
the dynamic logical
structure of cross-
platform software

Representation of cross-platform software behavior by activities. Definition of
nodes and arcs of activity. Definition of nodes of activity management. Graphical

notations of representation of activity. Examples of activity presentation.

Task on self-study: item 6 No. 11.

12 Laboratory work 4.
Creating a dynamic

logical structure of cross-
platform software

Task: to create a dynamic logical structure of cross-platform software.

Task on self-study: item 6 No. 12.

13 Lecture 9. Interaction of
elements of cross-
platform software

Concept of interaction of elements of cross-platform software. Ways of
representing the interaction of elements of cross-platform software. Specification of

interaction of elements of cross-platform software.

Assignment on self-study: item 6 No. 13.

14 Lecture 10. Presentation
of the interaction of
elements of cross-
platform software

Representation of the interaction of cross-platform software elements with lifelines
and messages between them. Determination of life lines. Defining messages

between life lines. Graphic notation of the representation of life lines and messages

between them. Examples of the representation of life lines and messages between
them.

Assignment on self-study: item 6 No. 14.

Topic 3. Creation of the physical structure of cross-platform software

15 Lecture 11. Physical
structure of cross-
platform software

The concept of the physical structure of cross-platform software. Ways of
presenting the physical structure of cross-platform software. Specification of the

physical structure of cross-platform software.

Assignment on self-study: item 6 No. 15.

16 Lecture 12. Presentation
of the physical structure

of cross-platform
software

Representation of the physical structure of cross-platform software by components.
Identifying component ports and connectors. Determination of relations between

components. Graphical notations of physical structure representation. Examples of
physical structure representation.

Assignment on self-study: item 6 No. 16.

17 Laboratory work 5.
Creation of a physical

structure of cross-
platform software

The task: to create a physical structure of cross-platform software.

Task on self-study: item 6 No. 17.

18 Lecture 13. Physical
configuration of cross-

platform software

Concept of physical configuration of cross-platform software. Ways of representing
the physical configuration of cross-platform software. Specification of the physical

configuration of cross-platform software.

Assignment on self-study: item 6 No. 18.

19 Lecture 14. Presentation
of the physical

configuration of cross-
platform software

Representation of the physical configuration of cross-platform software by nodes.
Types of physical nodes. Stereotypes of physical nodes. Determination of physical

nodes and relations between them. Graphical notations of the representation of the
physical configuration. Examples of physical configuration representation.

Assignment on self-study: item 6 No. 19.

20 Laboratory work 6.
Creating a physical

configuration of cross-
platform software

Task: create a physical configuration of cross-platform software.

Task on self-study: item 6 No. 20.

Topic 4. Implementation of the physical structure of cross-platform software

21 Lecture 15. Means of
implementing the

physical structure of
cross-platform software

Functional assignment of cross-platform software. Description of the logic of cross-
platform software. Selection of means of implementing the physical structure of

cross-platform software.

Assignment on self-study: item 6 No. 21.

22 Lecture 16. The logic of
cross-platform software

Structure of cross-platform software Elements of cross-platform software. Functions
of elements of cross-platform software. Relationship between elements of cross-

platform software. The logic of elements of cross-platform software.

Task on self-study: item 6 No. 22.

23 Modular control work.
Creation of a working

project of a cross-
platform program

Task: to create a working project of cross-platform software.

Task on self-study: item 6 No. 23.

24 Lecture 17. Cross-
platform software testing

The concept of cross-platform software testing. The life cycle of cross-platform
software. Methods of testing cross-platform software. Peculiarities of cross-

platform software testing.

Task on self-study: item 6 No. 24.

25 Lecture 18. Test design of
cross-platform software

The concept of cross-platform software test design. The concept of a test case.
Attributes of test cases. Life cycle of test cases. Creation of test cases. Quality of test

cases.

Task on self-study: item 6 No. 25.

26 Laboratory work 7.
Demonstration of a

working project of cross-
platform software

Task: to demonstrate a working project of cross-platform software.

Task on self-study: item 6 No. 26.

27 Modular controul work Task on self-study: item 6 No. 27.

7. Independent work of a student/graduate student

The discipline "Cross-Platform Programming" is based on independent preparations for classroom classes on
theoretical and practical topics.

№z
з/p The name of the topic submitted for independent processing Number of

hours literature

1 Preparation for the lecture 1 1,5 1–3; 8; 9
2 Preparation for the lecture 2 1,5 1; 2; 8; 9
3 Preparation for laboratory work 1 4 1; 2; 8; 9
4 Preparation for the lecture 3 1,5 1; 2; 5–9; 12–14
5 Preparation for the lecture 4 1,5 1; 2; 5–9; 12–14
6 Preparation for laboratory work 2 4 1; 2; 5–9; 12–14
7 Preparation for the lecture 5 1,5 1–3; 8; 9
8 Preparation for the lecture 6 1,5 1–3; 8; 9
9 Preparation for laboratory work 3 4 1–3; 8; 9

10 Preparation for the lecture 7 1,5 1–3; 8; 9
11 Preparation for the lecture 8 1,5 1–3; 8; 9
12 Preparation for laboratory work 4 4 1–3; 8; 9
13 Preparation for the lecture 9 1,5 1–3; 8; 9
14 Preparation for the lecture 10 1,5 1–3; 8; 9
15 Preparation for the lecture 11 1,5 1–3; 8; 9
16 Preparation for the lecture 12 1,5 1–3; 8; 9
17 Preparation for laboratory work 5 4 1–3; 8; 9
18 Preparation for the lecture 13 1,5 1–3; 8; 9
19 Preparation for the lecture 14 1,5 1–3; 8; 9
20 Preparation for laboratory work 6 4 1–3; 8; 9
21 Preparation for the lecture 15 1,5 1–3; 8–10
22 Preparation for the lecture 16 1,5 1–3; 8–10

23 Preparation for the Preparation for the modular control laboratory
work

6 1–3; 8–10

24 Preparation for the lecture 17 1,5 3, 4, 11
25 Preparation for the lecture 18 1,5 3, 4, 11.
26 Preparation for laboratory work 7 3 3, 4, 11
27 Preparation for the test 6 1-14

7. Policy and control

Attending lectures is mandatory.

Attending laboratory work classes may be occasional and as needed for consultation/protection of
laboratory work.

Rules of behavior in classes: activity, respect for those present, turning off phones.

Adherence to the policy of academic integrity.

Rules for the protection of laboratory work: the work must be performed in accordance with the assigned
tasks and according to the option chosen by the student.

8. Types of control and rating system for evaluating learning outcomes

During the semester, students perform 7 laboratory works.
The maximum number of points for each laboratory work: 5 points.

Points are awarded for the quality of performance and protection of laboratory work: 0-5 points.
Criteria for evaluating the quality of performance and protection:
5 points - the work is done qualitatively, in full, the answers are complete, well-argued;
4 points - the work is done qualitatively, in full, but has shortcomings, answers with minor errors;
3 points – the work is done with sufficient quality, in full, but contains significant shortcomings, answers
with significant errors;
0 points - the work is not done well, not in full, the answers are either absent or incorrect.
The maximum number of points for performing and defending laboratory work:
5 points × 7 laboratory works = 35 points.

The task of modular control work is to implement software security requirements. The answer is evaluated
by 15 points.
Evaluation criteria for modular test work:
14–15 points – the answer is correct, complete, well-argued;
12–13 points – the answer is generally correct, but has flaws;
9–11 points – there are significant errors in the answer;
0 points - there is no answer or the answer is incorrect.

The maximum number of points for a modular control work:

15 points × 1 task = 15 points.

The rating scale for the discipline is equal to:

R = RS = Rlab. works + R modular control work + Rexam = 35 points + 15 points + 50 points = 100 points.

Calendar control: is conducted twice a semester as a monitoring of the current state of fulfillment of the
syllabus requirements.

At the first certification (8th week), the student receives "Passed" if his current rating is at least 10 points
(50% of the maximum number of points that the student can receive before the first certification).

At the second certification (14th week), the student receives "Passed" if his current rating is at least 20
points (50% of the maximum number of points that the student can receive before the second
certification).

Semester control: exam

Conditions for admission to semester control:

A prerequisite for a student's admission to the exam is a semester rating (RC) of at least 30 points. After
passing the exam, a grade is assigned according to the table (Table of correspondence of rating points to
grades on the university scale).

The exam task consists of 3 questions - 2 theoretical and 1 practical. The answer to each theory question
is worth 15 points, and the answer to a practical question is worth 20 points.

Evaluation criteria for a theoretical question:

14–15 points – the answer is correct, complete, well-argued;

11–13 points – the answer is generally correct, but has flaws;

5–10 points – there are significant errors in the answer;

0 points - there is no answer or the answer is incorrect.

Evaluation criteria for a practical question:

17–20 points – the answer is correct, complete, well-argued;

12–16 points – the answer is generally correct, but has flaws;

5–11 points – there are significant errors in the answer;

0 points - there is no answer or the answer is incorrect.

Table of correspondence of rating points to grades on the university scale:

Scores Rating

100-95 Perfectly

94-85 Very good

84-75 Fine

74-65 Satisfactorily

64-60 Enough

Less 60 Unsatisfactorily

Admission conditions not met Not allowed

2. Additional information on the discipline (educational component)

The list of questions submitted for semester control is given in Appendix 1.

Working program of the academic discipline (syllabus):

Compiled by Ph.D., Associate Professor V.V. Tsurkan.

Adopted by Computer Systems Software Department (protocol № 8 from 25.01.23)

Approved by the Faculty Board of Methodology (protocol № 6 from 27.01.23)

Appendix 1. List of questions submitted for semester control

1. To characterize the concept of cross-platform as a property of software.

2. To characterize the types of cross-platform software.

3. Describe ways to achieve cross-platform software.

4. Describe the means of achieving cross-platform software.

5. Describe the methods of determining functional requirements for cross-platform software.

6. Describe the presentation of options for using cross-platform software.

7. Describe the methods of determining non-functional requirements for cross-platform software.

8. Describe the methods of modeling security threats of cross-platform software.

9. Describe the concept of static logical structure of cross-platform software.

10. Describe the presentation of the static logical structure of cross-platform software.

11. Describe the concept of dynamic logical structure of cross-platform software.

12. Describe the representation of the dynamic logical structure of cross-platform software.

13. Describe the concept of interaction of elements of cross-platform software.

14. Describe the representation of the interaction of elements of cross-platform software.

15. Describe the concept of the physical structure of cross-platform software.

16. Describe the representation of the physical structure of cross-platform software.

17. Describe the concept of physical configuration of cross-platform software.

18. Describe the representation of the physical configuration of cross-platform software.

19. Describe the implementation of the physical structure of cross-platform software.

20. Describe the process of testing cross-platform software.

