
 

 

 
 

Кафедра програмного 
забезпечення комп’ютерних 
систем 

AGILE SOFTWARE DEVELOPMENT 
Working program of the academic discipline (Syllabus) 

 

Course requisites 

Cycle of Higher Education First (bachelor) 
Study area 12 Information technologies 
Speciality 121 Software engineering 
Educational program Software Engineering of Multimedia and Information Retrieval Systems 

Discipline status Elective 
Study form Daytime 
Year of study, semester 4 year of training, 7 semester 
Discipline volume Lectures: 36 hours, computer workshop: 18 hours, self work: 66 hours. 

Semester control/ control 
measures 

Final test, modular control work, calendar control 

Course schedule According to the schedule for the autumn semester of the current academic year 
(rozklad.kpi.ua) 

Language Ukrainian 
Information about 
head of the course / 
teachers 

Lecturer: PhD, Associate Professor, Iana Khitsko, iana.khitsko@gmail.com 
Teacher of computer workshop: PhD, Associate Professor, Iana Khitsko, 
iana.khitsko@gmail.com  

Access to course Google classroom:  
https://classroom.google.com/c/NDE3OTQxMzE5NjU5?cjc=ne2zis4 

Outline of the Course 

1. Course description, goals, objectives, and learning outcomes 

The purpose of studying the discipline "Agile Software Development" is to allow students to develop the 
competencies necessary for solving practical problems of professional activity related to software 
development according to modern agile methodologies. 

The goal of studying the discipline "Agile Software Development" is the formation of students' ability to 
choose a software development methodology in accordance with the specified requirements and design 
and construction environment; apply various Agile practices in software design and construction; conduct 
an analysis of the effectiveness of the application of practices and sub-processes from the Agile family. 

The subject of the discipline "Agile Software Development" is the algorithmic support of the processes of 
software analysis, design, monitoring and construction. 

https://classroom.google.com/c/NDE3OTQxMzE5NjU5?cjc=ne2zis4


 

 

The discipline "Agile Software Development" strengthens the following professional competencies of the 
educational and professional program: 

PC01 - Ability to identify, classify and formulate software requirements; 
PC02 - Ability to participate in software design, including its structure, behavior and functioning processes 
modeling (formal description); 
PC03 - Ability to develop software systems architectures, modules and components; 
PC04 - Ability to formulate and ensure software quality requirements in accordance with customer 
requirements, specifications and standards; 
PC05 - Ability to follow specifications, standards, rules and recommendations in the professional field 
during the life cycle processes implementation; 
PC08 - Ability to apply fundamental and interdisciplinary knowledge to successfully solve software 
engineering problems; 
PC10 - Ability to accumulate, process and systematize professional knowledge about software creation 
and maintenance, and determination of the importance of lifelong learning; 
PC11 - Ability to implement phases and iterations of the life cycle of the software systems and information 
technology based on appropriate models and approaches to software development; 
PC12 - Ability to carry out the system integration process, apply change management standards and 
procedures to maintain software integrity, overall functionality and reliability. 

The discipline «Agile Software Development» contributes to the formation of program learning outcomes: 

PLO03 - To know the software life cycle basic processes, phases and iterations; 
PLO04 - To know and apply professional standards and other regulatory documents in the field of software 
engineering; 
PLO05 - To know and apply relevant mathematical concepts, domain methods, system and object-oriented 
analysis and mathematical modeling for software development; 
PLO06 - Ability to select and use the appropriate task of software development methodology; 
PLO09 - To be able to use collecting, formulating and analyzing software requirements methods and tools; 
PLO10 - To conduct a pre-project survey of the subject area, system analysis of the design object; 
PLO12 - To apply effective approaches to software design in practice; 
PLO20 - To know approaches to evaluation and quality assurance of software; 
PLO23 - To be able to document and present the software development results. 

2. Discipline prerequisites and postrequisites (place in the structural and logical education 
scheme according to the relevant educational program) 

The successful study of the discipline «Agile Software Development» preceded by the study of the 
disciplines "Software engineering components. Part 4. Software quality and testing", "Software 
engineering components. Part 2. Software modeling. Analysis of software requirements", "Software 
engineering components. Part 3. Software architecture" of the curriculum for bachelor's training in the 
specialty 121 Software engineering. 

The theoretical knowledge and practical skills acquired during the mastering of the discipline "Agile 
Software Development" ensure the successful implementation of course and diploma projects in the 
specialty 121 Software Engineering. 

3. Content of the course  

The discipline «Agile Software Development» involves the study of such topics: 

Topic 1. Software Development lifecycle 

Topic 2. Agile methodologies 

Topic 3. Agile best practices 



 

 

Modular test 

Test 

4. Coursebooks and teaching resources 

Basis reference: 

1. Electronic campus of NTUU “KPI by Igor Sikorsky”. Discipline materials for “Agile Software 
Development”. – http://login.kpi.ua 

2. Web-portal of Applied Mathematics Faculty. Materials archive.  «Хіцко» folder. – Режим доступу : 
http://fpm.kpi.ua/archive/dir.do?sys_id=obj_2  

 

Additional reference: 
3. Kent Beck. "Manifesto for Agile Software Development" [електронний ресурс] / Kent Beck, James 

Grenning, Robert C. Martin, Mike Beedle, Jim Highsmith, Steve Mellor, Arie van Bennekum, Andrew 
Hunt, Ken Schwaber, Alistair Cockburn, Ron Jeffries, Jeff Sutherland, Ward Cunningham, Jon Kern, 
Dave Thomas, Martin Fowler, Brian Marick // Agile Alliance, 2001. – режим доступу - 
http://agilemanifesto.org/ . 

4. Steve McConnell (1996). Rapid Development: Taming Wild Software Schedules, Microsoft Press 
Books, ISBN 978-1-55615-900-8 

5. DSDM Consortium. DSDM Atern: the Handbook [електронний ресурс] / DSDM Consortium, 2008. – 
режим доступу - https://www.agilebusiness.org/resources/dsdm-handbooks/dsdm-atern-
handbook-2008 . 

6. Schwaber, Ken (2004). "SCRUM Development Process"(PDF). Advanced Development Methods - 
режим доступу  - http://www.jeffsutherland.org/oopsla/schwapub.pdf 

7.  "Extreme Programming Rules". extremeprogramming.org. 
8. Palmer, S.R., & Felsing, J.M. (2002). A Practical Guide to Feature-Driven Development. Prentice Hall. 

(ISBN 0-13-067615-2) 
9. Cockburn, Alistair.  Crystal Clear, A Human-Powered Methodology for Small Teams [Text] / Alistair 

Cockburn // Addison-Wesley Professional, 2004. – pp.336. - ISBN 0-201-69947-8. 

10. Kanban: Successful Evolutionary Change for Your Technology Business, David J. Anderson. (United 
States, Blue Hole Press, 2010. ISBN 978-0984521401 

11. Scrumban: Essays on Kanban Systems for Lean Software Development, Corey Ladas. (United States, 
Modus Cooperandi Press, 2009. ISBN 9780578002149 

12. Mary Poppendieck; Tom Poppendieck (2003). Lean Software Development: An Agile Toolkit. Addison-
Wesley Professional. ISBN 978-0-321-15078-3. 

13. Cohn, Mike. "Planning Poker Cards: Effective Agile Planning and Estimation". Mountain Goat 
Software, 30 March 2016. - режим доступу - 
https://www.mountaingoatsoftware.com/tools/planning-poker 

14. Eric Evans, 2015 Domain Driven Design, Definitions and Pattern Summaries. Режим доступу - 
https://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf 

15. Leybourn, E. (2013). Directing the Agile Organisation: A Lean Approach to Business Management. 
London: IT Governance Publishing: 71–79. 

 

Educational content 

5. Methods of mastering the discipline (educational component) 

№ Training session type Lesson description 

http://login.kpi.ua/
http://agilemanifesto.org/
https://en.wikipedia.org/wiki/Steve_McConnell
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-55615-900-8
https://www.agilebusiness.org/resources/dsdm-handbooks/dsdm-atern-handbook-2008
https://www.agilebusiness.org/resources/dsdm-handbooks/dsdm-atern-handbook-2008
http://www.jeffsutherland.org/oopsla/schwapub.pdf
http://www.jeffsutherland.org/oopsla/schwapub.pdf
http://www.extremeprogramming.org/rules.html
https://en.wikipedia.org/w/index.php?title=Mac_Felsing&action=edit&redlink=1
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-13-067615-2
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0984521401
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9780578002149
https://books.google.com/books?id=hQk4S7asBi4C&pg=PA182
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-321-15078-3
https://www.mountaingoatsoftware.com/tools/planning-poker
https://www.mountaingoatsoftware.com/tools/planning-poker
https://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
https://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf


 

 

Topic 1. Software development life cycle 

1 Lecture 1. Software 
development life cycle 

Phases of the project according to the PMI methodology and 
software development process. Life cycle models. Waterfall 
model. Prototyping model. The big bang model. V-shaped. 
Iteration. Incremental and iterative models. Spiral model.  

Topic 2. Методології Agile 

3 Lecture 2. Agile priciples Basic software development methodologies. Basic principles 
of Agile. 

4 Lecture 3. RAD & DSDM Application of RAD methodology. The main phases of DSDM 
and its application. 

 Lecture 4. SCRUM (Part 1) Scrum: main principles and development cycle. 

5 Lecture 5. SCRUM (Part 2) Product backlog, user stories and meetings in SCRUM. 

6 Computer Workshop 1. 
SCRUM 

Objective: plan a project and develop its three iterations using 
SCRUM. 

7 Lecture 6. Extreme 
programming 

Main XP principles and lifecycle.  

8 Lecture 7. FDD  Feature driven development basic concepts and practices.  

9 Lecture 8. Crystal 
methodologies and Lean  

The main aspects of Crystal methodologies, their varieties and 
differences. Basic concepts and principles of Lean. 

10 Lecture 9. Kanban and 
Scrumban 

Kanban and Scrumban methodologies, main differences and 
conditions of application. 

Topic 3. Agile best practices  

11 Lecture 10. Sprint and product 
backlog 

Iterative and incremental development. Sprint and product 
backlog. 

12 Computer Workshop 2. 
TRELLO 

Objective: register in the TRELLO system, create multiple 
iterations and tasks for each iteration, make changes to the 
task and change the status of the task. 

13 Lecture 11. User stories and 
story points  

 User stories and story points, estimations. 

14 Computer Workshop 3. User 
stories and their estimation 

Objective: develop user stories and evaluate them using 
planning poker. 

15 Lecture 12. Agile planning and 
velocity  

Planning Poker and Velocity in Agile Development.  



 

 

16 Lecture 13. Domain driven 
modelling 

Domain driven modelling, its phases and features  
 

17 Lecture 14. Story modelling 
and testing in Agile 

Story modelling and testing in Agile 
 

18 Lecture 15. Agile other 
practices 

Continuous integration. Cross-functional team  
 

Modular test  

 

6. Self-study 

The discipline "Agile Software Development" is based on independent preparations for classroom classes 
on theoretical and practical topics. 

№ The name of the topic that is submitted for independent study Hours of 
study 

References 

1 Preparing for lecture 1 2 3, pp. 3-28; 4, pp. 25-
28 

2 Preparing for lecture 2 2 5 

3 Preparing for lecture 3 2 6, pp. 10-25; 6 

4 Preparing for lecture 4 2 7, pp. 1-25 

5 Preparing for lecture 5 2 7, pp. 1-25 

6 Preparing for  computer workshop 1 2 7, pp. 1-25 

7 Preparing for lecture 6 2 8 

8 Preparing for lecture 7 2 9, pp. 5-13 

9 Preparing for lecture 8 2 10, pp. 127-132 

10 Preparing for lecture 9 2 11, pp. 13-20 

11 Preparing for lecture 10 2 12, pp. 67-75 

12 Preparing for  computer workshop 2 2 11, pp. 13-20; 12, pp. 
67-75 

13 Preparing for lecture 11 2 13, pp. 161-164 

14 Preparing for  computer workshop 3 2 13, pp. 161-164; 12, 
pp. 67-75 



 

 

15 Preparing for lecture 12 2 14 

16 Preparing for lecture 13 2 15 

17 Preparing for lecture 14 2 15 

18 Preparing for lecture 15 2 16, pp. 71-79 

19 Preparing for modular test 6 1, pp. 3-28; 2, pp. 25-
28; 7, pp. 1-25; 9, pp. 
5-13; 10, pp. 127-
132; 11, pp. 13-20; 
12, pp. 67-75; 14-15; 
16, pp. 71-79 

20 Preparing for the test 6 1, pp. 3-28; 2, pp. 25-
28; 7, pp. 1-25; 9, pp. 
5-13; 10, pp. 127-
132; 11, pp. 13-20; 
12, pp. 67-75; 14-15; 
16, pp. 71-79 

21 Rapid Application Development 2 5, pp. 10-25 

22 Ping-pong programming 2 8 

23 Crystal Orange application 2 10, pp. 127-132 

24 Kanban board creation in Trello 4 11, pp. 13-20 

25 Planning Pocker task planning method 4 14, pp. 1-8 

26 Story-boarding 4 15, pp. 71-79 

 

Policy and Assessment 

7. Course policy 

• Attending lectures is mandatory. 
• Attending computer workshop classes may be occasional and as needed to protect computer 

workshop work. 
• Rules of behavior in classes: activity, respect for those present, turning off phones. 
• Adherence to the policy of academic integrity. 
• Rules for protecting the works of the computer workshop: the works must be done according to 

the option of the student, which is determined by his number in the group list. 



 

 

• The rules for assigning incentive and penalty points are as follows. 

Incentive points are awarded for a creative approach in the performance of computer workshop works 
(the maximum number of points for all works is 2 points). 

Penalty points are calculated for: 

- plagiarism (the program code does not correspond to the task variant, the identity of the program code 
among different works) in the works of the computer workshop: -5 points for each attempt. 

 

8. Types of control and rating system for evaluating learning outcomes (ELО) 

During the semester, students perform 3 computer practicals. The maximum number of points for each 
computer workshop: 16 points. 

Points are awarded for: 
- quality of laboratory work (computer workshop): 0-6 points; 
- answer during the defense of laboratory work (computer workshop): 0-6 points; 
- timely submission of work for defense: 0-4 points. 

Performance evaluation criteria: 
6 points – the work is done qualitatively, in full; 
4-5 points – the work is done qualitatively, in full, but has shortcomings; 
1-3 points – the work is completed in full, but contains minor errors; 
0 points – the work is incomplete or contains significant errors. 

Answer evaluation criteria: 
6 points – the answer is complete, well-argued; 
4-5 points – in general, the answer is correct, but has flaws or minor errors; 
1-3 points – there are significant errors in the answer; 
0 points - there is no answer or the answer is incorrect. 

Criteria for evaluating the timeliness of work submission for defense: 
4 points – the work is presented for defense no later than the specified deadline; 
3 points – the work is submitted for defense within 1 week after the specified deadline; 
2 points – the work is submitted for defense within 2 weeks after the specified deadline; 
2 points – the work is submitted for defense within 3 weeks after the specified deadline; 
0 points – the work is submitted for defense within 4 or more weeks after the specified deadline. 

The maximum number of points for performing and defending computer practicals: 
16 points × 3 lab. works (comp. practical) = 48 points. 

The task for the modular test consists of 6 questions, the answer to 4 of which is evaluated by 8 points, by 
2 - 10 points. 

Evaluation criteria for more difficult test questions: 
9-10 points – the answer is correct, complete, well-argued; 
7-8 points – the answer is correct, detailed, but not very well argued; 
5-6 points - in general, the answer is correct, but has shortcomings; 
3-4 points – there are minor errors in the answer; 
1-2 points – there are significant errors in the answer; 
0 points - there is no answer or the answer is incorrect. 

Evaluation criteria for simpler test questions: 
7-8 points – the answer is correct, complete, well-argued; 
5-6 points - in general, the answer is correct, but has shortcomings; 
3-4 points – there are minor errors in the answer; 



 

 

1-2 points – there are significant errors in the answer; 
0 points - there is no answer or the answer is incorrect. 

The maximum number of points for a modular control work: 
10 points × 2 questions + 8 points × 4 questions = 52 points. 

The rating scale for the discipline is equal to: 
R = RS = 48 points + 52 points = 100 points. 

Calendar control: is carried out twice a semester as a monitoring of the current state of fulfillment of the 
syllabus requirements. 
At the first certification (8th week), the student receives "credited" if his current rating is at least 8 points 
(50% of the maximum number of points a student can receive before the first certification). 
At the second certification (14th week), the student receives "passed" if his current rating is at least 16 
points (50% of the maximum number of points a student can receive before the second certification). 

Semester control: test. 

Conditions for admission to semester control: 

With a semester rating (Rc) of not less than 60 points and the enrollment of all computer workshop, the 
student receives credit "automatically" according to the table (Table of correspondence of rating points to 
grades on the university scale). Otherwise, he has to perform the final test. 

Completion and protection of a computer workshop is a necessary condition for admission to the credit 
control work. 

If the student does not agree with the "automatic" grade, he can try to improve his grade by writing a 
credit test, while his points received for the semester are kept, and the better of the two grades received 
by the student is assigned ("soft" grading system) . 

Table of correspondence of rating points to grades on the university scale:  
Points Grade 
100-95 Excellent 
94-85 Very good 
84-75 Good 
74-65 Satisfactorily 
64-60 Enough 
< 60 Unsatisfactorily 

Admission conditions are not met Not admitted 
 

9. Additional information about the course 

The list of questions to be submitted for semester control is given in Appendix 1. 

 

Course syllabus: 

Is created by PhD, Associate Professor Iana Khitsko. 

Adopted by Computer Systems Software Department (protocol № 8 from 25.01.23) 

Approved by the Faculty Board of Methodology (protocol № 6 from 27.01.23) 

 

 

  



 

 

 

Appendix 1. List of questions to be submitted for semester control 

1. Name the main practices in Feature Driven Design (minimum 3). 

2. How does a daily Scrum meeting go and what issues are discussed? 

3. Are intermediate product releases distributed in cascade and incremental software development 
models? 

4. What scale of projects can use Crystal Orange? 

5. What are the conditions for applying the RAD methodology? 

6. Is there a sprint finish in Scrumban? 

7. Is there a sprint finish in Kanban? 

8. How does a user story differ from a use case? 

9. How is team performance evaluated in Scrum? 

10. What is the anti-pattern 'watch the master' in pair programming? 

11. How can requirements change in cascade and incremental software development models? 

12. Can an architect or a project manager pre-determine task estimates in the planning poker process? 

13. What are story points used for? 

14. What is the MoSCoW principle? 

 

 

 

 

 

 


