

 Кафедра програмного
забезпечення комп’ютерних
систем

SOFTWARE SECURITY

Working program of the academic discipline (Syllabus)
Details of the educational component

Level of higher education First (Bachelor)
Branch of knowledge 12 Information Technologies
Specialty 121 Software Engineering
Educational program Software Engineering of Multimedia and Information-Retrieval Systems
Status of the educational
component

Normative

Form of education Full-time
A year of training 4th year of training, 7th semester
The scope of the
educational component

Lectures: 36 hours, laboratory work: 18 hours, self-study: 66 hours.

Semester control / control
measures

Exam, modular control work, calendar control

Schedule of classes According to the schedule for the autumn semester of the current academic year
(http://roz.kpi.ua/

Language of instructions English
Information about
head of the course /
teachers

Lecturer: Ph.D., associate professor, V. V. Tsurkan, v.v.tsurkan@gmail.com
Laboratory work: Ph.D., associate professor, V.V. Tsurkan, v.v.tsurkan@gmail.com

Course location Google classroom: https://classroom.google.com/

Program of academic discipline

1. Description of the educational discipline, its purpose, subject of study and learning outcomes

The study of the discipline "Software Security" allows students to develop the competencies necessary for
solving practical tasks of professional activity related to the development of software in terms of its
security (primarily confidentiality, integrity, availability).

The purpose of studying the discipline "Software Security" is the formation of students' abilities to
independently develop software by defining and implementing its security requirements (primarily
confidentiality, integrity, availability).

The subject of the "Software Security" discipline is methods of modeling software security threats.

The study of the discipline "Software Security" forms professional competences (FC) in students, necessary
for solving practical tasks of professional activities related to the development, improvement and
operation of software:
PC01 Ability to identify, classify and formulate software requirements.
PC03 Ability to develop software systems architectures, modules and components.
PC06 Ability to analyze, select and apply methods and tools to ensure information security (including
cybersecurity).

PC08 Ability to apply fundamental and interdisciplinary knowledge to successfully solve software
engineering problems.
PC14 Ability to algorithmic and logical thinking.
PC17 Ability to develop software for information retrieval systems.
PC19 Ability to develop software for multimedia and mulsemedia systems.

The study of the discipline "Software Security" contributes to the formation in students of the following
program learning outcomes (PLO) according to the educational program:
PLO01 To analyze, purposefully search and select the necessary information and reference resources and
knowledge to solve professional problems, taking into account modern advances in science and
technology.
PLO18 To know and be able to apply information technology of processing, storage and transmission of
data.
PLOН21 To know the tools, analyze, select, skillfully apply the information security (including
cybersecurity) and data integrity means in accordance with the applied tasks and software systems.
PLO38 To be able to apply programming technologies for multimedia and information retrieval systems
software development.

2. Pre-requisites and post-requisites of the discipline (place in the structural and logical scheme of
training according to the relevant educational program)

The successful study of the discipline "Software Security" is preceded by the study of the disciplines
"Components of Software Engineering", "Fundamentals of Programming", "Databases", "Programming"
of the training plan for bachelors in the specialty 121 Software Engineering.

The theoretical knowledge and practical skills obtained during the mastering of the "Software Security"
discipline ensure the successful implementation of course projects and diploma projects in the specialty
121 Software Engineering.

3. Content of the academic discipline

The discipline "Software Security" involves the study of the following topics:
Topic 1. Introduction to software security
Topic 2. Methods of modeling software security threats
Modular control work
Exam

4. Educational materials and resources

Basic literature:

1. Security of the software environment. Electronic campus of NTUU "KPI named after Igor Sikorsky".
Materials from the discipline "Security of the software environment". – Access to registered students.

Additional literature:

2. Shostak A. Threat Modeling: Designing for Security. Indianapolis: Jon Shii & Sons, 2014. 590 p.

3. Tarandach I., Coles M. J. Threat Modeling. A Practical Guide for Development Teams. Sebastopol:
O’Reilly Media, 2020, 201 p.

4. Threat Modeling. URL: https://owasp.org/www-community/Threat_Modeling (accessed on:
01.06.2022).

5. Common Vulnerability Scoring System v3.1: Specification Document. URL: https://www.first.org/
cvss/v3.1/specification-document (accessed on: 01.06.2022).

6. LINDDUN framework. URL: https://www.linddun.org/linddun (accessed on: 01.06.2022).

7. ISO/IEC 27005:2018. Information technology. Security techniques. Information security risk
management. [Valid from 2018-06-10]. URL: https://www.iso.org/standard/75281.html (accessed on:
01.06.2022).

8. MITER ATT&CK. URL: https://attack.mitre.org/ (accessed on: 01.06.2022).

9. Threat Modeling Manifesto. URL: https://www.threatmodelingmanifesto.org/ (accessed on:
01.06.2022).

10. Threat Modeling. URL: https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
(accessed on: 01.06.2022).

11. Threat Modeling. Process. URL: https://owasp.org/www-community/Threat_ Modeling_Process
(accessed on: 01.06.2022).

12. Create a threat model using data-flow diagram elements. URL: https://docs.microsoft.com/en-
us/learn/modules/tm-create-a-threat-model-using-foundational-data-flow-diagram-elements/ (accessed
on: 01.06.2022).

13. ISO/IEC 27000:2018. Information technology. Security techniques. Information security management
systems. Overview and vocabulary. [Valid from 2018-02-07]. URL: https://www.iso.org/standard/
73906.html (accessed on: 01.06.2022).

14. DREAD Threat Modeling: An Introduction to Qualitative Risk Analysis. URL:
https://www.eccouncil.org/cybersecurity-exchange/threat-intelligence/dread-threat-modeling-intro/
(accessed on: 01.06.2022).

15. Schneier B. Attack Trees. URL: https://www.schneier.com/academic/archives/1999/12/
attack_trees.html (accessed on: 01.06.2022).

16. An Alternative: Attack Trees. URL: https://www.oreilly.com/library/view/building-secure-
servers/0596002173/ch01s03.html (accessed on: 01.06.2022)

17. Common Vulnerability Scoring System v3.1: Examples. URL: https://www.first.org/cvss/v3.1/examples
(accessed on: 01.06.2022).

18. IEC 31010:2019. Risk management. Risk assessment techniques. [Valid from 2019-06-17]. URL:
https://www.iso.org/standard/72140.html (accessed on: 01.06.2022).

19. Finding Cyber Threats with ATT&CK™-Based Analytics. URL: https://www.mitre.org/sites/
default/files/2021-11/16-3713-finding-cyber-threats-with-attack-based-analytics.pdf (accessed on:
01.06.2022).

Use to master the practical skills of the discipline. The materials are freely available on the Internet.
Educational content

4. Methods of mastering an educational discipline (educational component)

No Type of training session Description of the training session

Topic 1. Introduction to software security

1 Lecture 1. Course
content, introduction to
software security

Overview of course content. The concept of software security.
Properties of confidentiality, integrity, availability. Life cycle of
developing secure software. Approaches to defining software
security requirements

Task on self-study: item 6 No. 1.

2 Lecture 2. Modeling
software security threats

The concept of software security threat modeling. The process of
modeling software security threats. Stages of modeling software
security threats. Decomposition of software in terms of threats.

Assignment on self-study: item 6 No. 2.

3 Laboratory work 1.
Software decomposition

in terms of threats

Task: to decompose the software in terms of threats.

Assignment on self-study: item 6 No. 3.

Topic 2. Methods of modeling software security threats

4 Lecture 3. A method of
modeling software
security threats based on
a data flow diagram

The concept and characteristics of the data flow diagram. Features
of using a flow diagram to model software security threats. Elements
of a data flow diagram. The process of building a data flow diagram.

Tasks on self-study: Item 6 No. 4.

5 Lecture 4. Stages of
building a data flow
diagram

Rules for constructing a data flow diagram. Definition of software
processes. Definition of software data stores. Definition of software
entities. Defining data flows and trust boundaries between software
elements.

Task on self-study: item 6 No. 5.

6 Laboratory work 2.
Creating a model of
software security threats
based on a data flow
diagram

Task: Create a software security threat model based on a data flow diagram.

Assignment on self-study: item 6 No. 6.

7 Lecture 5. STRIDE
software security threat
modeling method

Characteristics of the STRIDE method. Attributes of the STRIDE
method: cpufing, spoofing, denial, disclosure, denial of service,
privilege escalation. The process of modeling software security
threats using the STRIDE method.

Tasks on self-study: Item 6 No. 7.

8 Lecture 6. Stages of
modeling software
security threats using the
STRIDE method

Defining the threat of spoofing. Definition of the threat of
falsification. Determining the threat of failure. Determination of the
threat of information disclosure. Determining the threat of denial of
service. Identifying the threat of privilege escalation. Defining
software security requirements.

Tasks on self-study: Item 6 No. 8.

9 Laboratory work 3.
Creating a model of
software security threats
using the STRIDE method

Task: create a model of software security threats using the STRIDE method.

Assignment on self-study: item 6 No. 9.

10 Lecture 7. DREAD
software security threat
modeling method

Characteristics of the DREAD method. DREAD threat assessment
scales. Selection of the threat assessment scale by the DREAD
method. The process of modeling software security threats using the
DREAD method.

Assignment on self-study: item 6 No. 10.

11 Lecture 8. Stages of
modeling software

Identifying software security threats. Definition of software security
threat assessment scale. Software security threat assessment.

security threats using the
DREAD method

Software Security Threat Ranking. Defining software security
requirements.

Task on self-study: item 6 No. 11.

12 Laboratory work 4.
Creating a software
security threat model
using the DREAD method

Task: create a model of software security threats using the DREAD
method.

Assignment on self-study: item 6 #12.

13 Lecture 9. Modeling
software security threats
by creating an attack
tree

Characteristics of the attack tree creation method. Ways to use the
attack tree. Choosing how to use the attack tree. The process of
modeling software security threats using the method of creating an
attack tree.

Assignment on self-study: item 6 No. 13.

14 Lecture 10. Stages of
modeling software
security threats using the
method of creating an
attack tree

Choosing how to display the attack tree. Creating the root node of
the attack tree. Creating subnodes of the root node of the attack
tree. Checking the completeness of the created attack tree. Pruning
the generated attack tree. Checking the generated attack tree.

Assignment on self-study: item 6 No. 14.

15 Laboratory work 5.
Creating a model of
software security threats
using the attack tree
method

Task: create a model of software security threats using the attack
tree method.

Task on self-study: item 6 No. 15.

16 Lecture 11. The method
of assessing the severity
of software
vulnerabilities

Characteristics of the method of evaluating the severity of
vulnerabilities. Metrics for evaluating the severity of vulnerabilities.
A string vector for assessing the severity of vulnerabilities.
Vulnerability Severity Calculator.

Assignment on self-study: item 6 No. 16.

17 Lecture 12. Stages of the
method of assessing the
severity of software
vulnerabilities
забезпечення

Definition of basic metrics. Determination of time metrics. Defining user
environment metrics. Definition of the equation for evaluating the severity
of software vulnerabilities. Using the Software Vulnerability Severity
Calculator.

Assignment on self-study: item 6 No. 17.

18 Laboratory work 6.
Evaluation of software
vulnerabilities according
to the CVSS standard

Task: evaluate software vulnerabilities according to the CVSS
standard.

Task on self-study: item 6 No. 18.

19 Lecture 13. Modeling
software security threats
using the LINDDUN
method

Characteristics of the LINDDUN method. Categories of threats
according to the LINDDUN method. Building a software security
threat model. Detection of software privacy threats. Managing
Software Privacy Threats.

Assignment on self-study: item 6 No. 19.

20 Lecture 14. Detection of
software privacy threats
using the LINDDUN
method

Building a software model. Mapping the elements of the data flow
diagram in relation to categories of privacy threats. Identifying and
documenting privacy threats.

Task on self-study: item 6 No. 20.

21 Modular control work.
Implementation of
software security
requirements

Task: implement software security requirements.

Task on self-study: item 6 No. 21.

22 Lecture 15. Methods of
software security risk
assessment

Varieties of software security risk assessment methods. Criteria for
choosing software security risk assessment methods. Approaches to
choosing software security risk assessment methods.

Task on self-study: item 6 No. 22.

23 Lecture 16. Assessment
of information security
risks using the
"Consequences -
Probability Matrix"
method

Characteristics of the risk assessment method. Risk assessment
scales. Choosing a risk assessment scale. Risk acceptability criteria.
Stages of using the risk assessment method.

Task on self-study: item 6 No. 23.

24 Laboratory work 7.
Demonstration of
implemented software
security requirements

Task: demonstrate implemented software security requirements.

Task on self-study: item 6 No. 24.

25 Lecture 17. MITER
ATT&CK Knowledge Base
on Software Hacker
Tactics and Techniques

Structure of the MITER ATT&CK knowledge base. MITER ATT&CK
matrix. Categories of structuring knowledge about tactics and
techniques of the violator: enterprise, mobile devices, industrial
control systems.

Task on self-study: item 6 No. 25.

26 Lecture 18. Creating a
software security threat
model based on the
MITER ATT&CK
knowledge base

Determination of the offender's behavior. Establishing data to
determine the behavior of the offender. Defining analytics based on
established data to determine offender behavior. Determination of
probable scenarios of the violator's actions. Assessment of likely
actions of the violator.

Task on self-study: item 6 No. 26.

5. Independent work of a student/graduate student

The "Software Security" discipline is based on independent preparations for classroom classes on
theoretical and practical topics.

№
z/

p
The name of the topic submitted for independent processing Number

of hours literature

1 Preparation for the lecture 1 1 1; 2; 3; 4; 9–11

2 Preparation for the lecture 2 1 1; 2; 3; 4; 9–11

3 Preparation for laboratory work 1 2 1; 2; 3; 4; 9–11

4 Preparation for the lecture 3 1 1; 2; 3; 4; 9–11

5 Preparation for the lecture 4 1 1; 2; 3; 4; 9–11

6 Preparation for laboratory work 2 2 1; 2; 3; 4; 9–11

7 Preparation for the lecture 5 1 1; 2; 3; 4; 9–11; 13

8 Preparation for the lecture 6 1 1; 2; 3; 4; 9–11; 13

9 Preparation for laboratory work 3 2 1; 2; 3; 4; 9–11; 13

10 Preparation for the lecture 7 1 1; 2; 3; 4; 9–11; 14

11 Preparation for the lecture 8 1 1; 2; 3; 4; 9–11; 14

12 Preparation for laboratory work 4 2 1; 2; 3; 4; 9–11; 14

13 Preparation for the lecture 9 1 1; 2; 3; 4; 9–11; 15;
16

14 Preparation for the lecture 10 1 1; 2; 3; 4; 9–11; 15;
16

15 Preparation for laboratory work 5 2 1; 2; 3; 4; 9–11; 15;
16

16 Preparation for the lecture 11 1 1; 2; 3; 4; 5; 9–11; 17

17 Preparation for the lecture 12 1 1; 2; 3; 4; 5; 9–11; 17

18 Preparation for laboratory work 6 2 1; 2; 3; 4; 5; 9–11; 17

19 Preparation for the lecture 13 1 1; 2; 3; 4; 6; 9–11

20 Preparation for the lecture 14 1 1; 2; 3; 4; 6; 9–11

21 Preparation for modular control work 4 1; 2; 3; 4; 9–16

22 Preparation for the lecture 15 1 1; 2; 3; 4; 7; 9–11; 18

23 Preparation for the lecture 16 1 1; 2; 3; 4; 7; 9–11; 18

24 Preparation for laboratory work 7 2 1; 2; 3; 4; 9–16

25 Preparation for the lecture 17 1 1; 2; 3; 4; 8–11; 19

26 Preparation for the lecture 18 1 1; 2; 3; 4; 8–11; 19

27 Preparation for the exam 30 1-19

Preparation for laboratory work

6. Policy of academic discipline (educational component)

Attending lectures is mandatory.

• Attending laboratory work classes may be occasional and as needed for consultation/protection
of laboratory work.

• Rules of behavior in classes: activity, respect for those present, turning off phones.

• Adherence to the policy of academic integrity.

• Rules for the protection of laboratory work: the work must be performed in accordance with the
assigned tasks and according to the option chosen by the student.

7. Types of control and rating system for evaluating learning outcomes (RSO)

During the semester, students perform 7 laboratory works.

The maximum number of points for each laboratory work: 5 points.
Points are awarded for the quality of performance and protection of laboratory work: 0-5 points.
Criteria for evaluating the quality of performance and protection:
5 points - the work is done qualitatively, in full, the answers are complete, well-argued;
4 points - the work is done qualitatively, in full, but has shortcomings, answers with minor errors;

3 points – the work is done with sufficient quality, in full, but contains significant shortcomings, answers
with significant errors;
0 points - the work is not done well, not in full, the answers are either absent or incorrect.
The maximum number of points for performing and defending laboratory work:
5 points × 7 laboratory works = 35 points.
The task of modular control work is to implement software security requirements. The answer is evaluated
by 15 points.
Evaluation criteria for modular test work:
14–15 points – the answer is correct, complete, well-argued;
12–13 points – the answer is generally correct, but has flaws;
9–11 points – there are significant errors in the answer;
0 points - there is no answer or the answer is incorrect.
The maximum number of points for a modular control work:

15 points × 1 task = 15 points.

The rating scale for the discipline is equal to:

R = RS = Rlab. works + R modular control work + Rexam = 35 points + 15 points + 50 points = 100 points.

Calendar control: is conducted twice a semester as a monitoring of the current state of fulfillment of the
syllabus requirements.

At the first certification (8th week), the student receives "Passed" if his current rating is at least 10 points
(50% of the maximum number of points that the student can receive before the first certification).

At the second certification (14th week), the student receives "Passed" if his current rating is at least 20
points (50% of the maximum number of points that the student can receive before the second
certification).

Semester control: exam

Conditions for admission to semester control:

A prerequisite for a student's admission to the exam is a semester rating (RC) of at least 30 points. After
passing the exam, a grade is assigned according to the table (Table of correspondence of rating points to
grades on the university scale).

The exam task consists of 3 questions - 2 theoretical and 1 practical. The answer to each theory question
is worth 15 points, and the answer to a practical question is worth 20 points.

Evaluation criteria for a theoretical question:

14–15 points – the answer is correct, complete, well-argued;

11–13 points – the answer is generally correct, but has flaws;

5–10 points – there are significant errors in the answer;

0 points - there is no answer or the answer is incorrect.

Evaluation criteria for a practical question:

17–20 points – the answer is correct, complete, well-argued;

12–16 points – the answer is generally correct, but has flaws;

5–11 points – there are significant errors in the answer;

0 points - there is no answer or the answer is incorrect.

Table of correspondence of rating points to grades on the university scale:

Scores Rating
100-95 Perfectly

94-85 Very good
84-75 Fine
74-65 Satisfactorily
64-60 Enough

Less 60 Unsatisfactorily
Admission conditions not met Not allowed

8. Additional information on the discipline (educational component)

The list of questions submitted for semester control is given in Appendix 1.

Working program of the academic discipline (syllabus):

Compiled by Ph.D., Associate Professor V.V. Tsurkan.

Adopted by Computer Systems Software Department (protocol № 12 from 26.04.23)

Approved by the Faculty Board of Methodology (protocol № 10 from 26.05.23)

Appendix 1. List of questions submitted for semester control

1. Describe the concept of software security.

2. To characterize the properties of confidentiality, integrity, and availability of software data.

3. Describe the life cycle of developing secure software.

4. Describe approaches to defining software security requirements.

5. Describe the concept of software security threat modeling.

6. Describe the process of modeling software security threats.

7. Describe the stages of software security threat modeling.

8. To characterize software decomposition in terms of threats.

9. Describe the method of modeling software security threats based on the data flow diagram.

10. Describe the STRIDE software security threat modeling method.

11. Describe the DREAD software security threat modeling method.

12. To characterize the modeling of software security threats by the method of creating an attack tree.

13. Describe the method of assessing the severity of software vulnerabilities.

14. Describe the severity metrics of software vulnerabilities.

15. Describe the simulation of software security threats using the LINDDUN method.

16. Describe approaches to choosing software security risk assessment methods.

17. To characterize the assessment of information security risks using the "Consequences - Probability
Matrix" method.

18. Describe the creation of a software security threat model based on the MITER ATT&CK knowledge
base.

19. Describe the definition of behavior analytics of a software security violator based on the MITER ATT&CK
knowledge base.

20. To characterize the determination of probable scenarios of actions of a software security violator based
on the MITER ATT&CK knowledge base.

