

Department of computer
systems software

COMPONENTS OF SOFTWARE ENGINEERING.
PART 4. SOFTWARE QUALITY AND TESTING
The working program of the academic discipline (Syllabus)

Details of the academic discipline

Level of higher education First (Bachelor)
Branch of knowledge 12 Information Technologies
Speciality 121 Software engineering
Educational program Software engineering of multimedia and information-search systems
Discipline status Normative
Form of education Daytime
Year of training, semester 3rd year of training, 5th semester
Scope of the discipline Lectures: 36 hours, computer workshop: 18 hours, self-study: 66 hours.
Semester control/ control
measures

Examination, calendar control

Lessons schedule According to the schedule for the autumn semester of the current academic year
(http://roz.kpi.ua/)

Language of teaching Ukrainian
Information about
the head of the
course/teachers

Lecturer: PhD. , assistant, Pogorelov Volodymyr volodymyr.pogorelov@gmail.com
Computer Workshop: PhD, assistant, Pogorelov V.V.

Placement of the course Google Classroom access is granted to registered students.

Program of educational discipline

1. Description of the educational discipline, its purpose, subject of study and learning outcomes

Studying the discipline "Components of Software Engineering. Part 4. Software Quality and Testing" allows
students to develop the competencies necessary for solving practical problems of professional activity
related to software quality assessment and testing.

The purpose of studying the discipline "Components of Software Engineering. Part 4. Software Quality and
Testing" is the formation of students' abilities to independently assess the quality and conduct testing of
the developed software.

The subject of the discipline is "Components of Software Engineering. Part 4. Software Quality and Testing"
are the processes, principles and techniques used for software quality analysis and testing.

Studying the discipline "Components of Software Engineering. Part 4. Software Quality and Testing" forms
speciality professional competencies (PC) necessary for solving practical tasks of professional activity
related to quality assessment and testing of developed software:
PC01 Ability to identify, classify and formulate software requirements.
PC02 Ability to participate in software design, including its structure, behavior and functioning processes
modeling (formal description).
PC03 Ability to develop software systems architectures, modules and components.

PC04 Ability to formulate and ensure software quality requirements in accordance with customer
requirements, specifications and standards.
PC05. Ability to follow specifications, standards, rules and recommendations in the professional field
during the life cycle processes implementation.
PC07 Knowledge of information data models, the ability to create software for data storage, retrieval and
processing.
PC08 Ability to apply fundamental and interdisciplinary knowledge to successfully solve software
engineering problems.
PC10 Ability to accumulate, process and systematize professional knowledge about software creation and
maintenance, and determination of the importance of lifelong learning.
PC11. Ability to implement phases and iterations of the life cycle of the software systems and information
technology based on appropriate models and approaches to software development.
PC12 Ability to carry out the system integration process, apply change management standards and
procedures to maintain software integrity, overall functionality and reliability.
PC13 Ability to reasonably select and master software development and maintenance tools.
PC21. Ability to identify, analyze and document software requirements for multimedia and information
retrieval systems
PC22. Ability to create innovative startup projects, calculate basic technical and economic indicators and
develop business models of multimedia software and information retrieval systems innovative startup
projects that have commercial potential for investment.

Program learning outcomes (PLO) of the discipline "Components of Software Engineering. Part 4.
Software Quality and Testing" according to the educational program:
PLO01 To analyze, purposefully search and select the necessary information and reference resources and
knowledge to solve professional problems, taking into account modern advances in science and
technology.
PLO02 To know the professional ethics code, understand the social significance and cultural aspects of
software engineering and adhere to them in professional activities.
PLO03 To know the software life cycle basic processes, phases and iterations.
PLO04 To know and apply professional standards and other regulatory documents in the field of software
engineering.
PLO06 To know and apply relevant mathematical concepts, domain methods, system and object-oriented
analysis and mathematical modeling for software development.
PLO07 To know and to apply in practice the fundamental concepts, paradigms and basic principles of the
functioning of language, instrumental and computational tools of software engineering.
PLO08 To know and to be able to develop a human-machine interface.
PLO09 To be able to use collecting, formulating and analyzing software requirements methods and tools.
PLO10 To conduct a pre-project survey of the subject area, system analysis of the design object.
PLO11 To select initial data for design, guided by formal methods of describing requirements and
modeling.
PLO13 To know and apply methods of developing algorithms, designing software and data and knowledge
structures.
PLO14 To apply in practice instrumental software tools for domain analysis, design, testing, visualization,
measurement and documentation of software.
PLO15 To choose programming languages and development technologies to solve the problems of
creating and maintaining software.
PLO16 To have the software development, design approval and all types of software documentation
release skills.
PLO17 To be able to apply methods of component software development.
PLO18 To know and be able to apply information technology of processing, storage and transmission of
data.
PLO19 To know and be able to apply software verification and validation methods.

PLO20 To know approaches to evaluation and quality assurance of software.
PLO23 To be able to document and present the software development results.
PLO31 To be able to identify, analyze and document software requirements for multimedia and
information retrieval systems
PLO32 To be able to develop and analyze full cycle models for multimedia and information retrieval
systems software creation.
PLO33 To be able to organize a software product management complete cycle.
PLO34 To be able to create innovative startup projects of designing multimedia and information-search
systems software that have commercial potential for investment.
PLO35 To be able to develop and analyze business models of innovative startup projects of developing
multimedia and information retrieval systems software that have commercial potential for investment.
PLO36 To be able to manage the creation and implementation of software projects in accordance with
international standards.
PLO38 To be able to apply programming technologies for multimedia and information retrieval systems
software development.

2. Pre-requisites and post-requisites of the discipline (place in the structural and logical scheme
of training according to the relevant educational program)

The successful study of the discipline "Components of Software Engineering. Part 4. Software Quality and
Testing" precedes the study of the disciplines "Fundamentals of Programming", "Components of Software
Engineering. Part 1. Introduction to Software Engineering", "Components of Software Engineering. Part 2.
Software Modeling. Analysis of Software Requirements", "Components of Software Engineering. Part 3.
Software Architecture" of the curriculum for bachelor's training in the speciality 121 Software engineering.

Received during the assimilation of the discipline "Software engineering components. Part 4. Software
quality and testing" theoretical knowledge and practical skills ensure successful completion of pre-diploma
practice, completion of course projects and diploma projects in the speciality 121 Software Engineering.

3. Content of the academic discipline

Discipline "Components of Software Engineering. Part 4. Software Quality and Testing" involves the study
of the following topics:
Topic 1. Fundamentals of software testing
Topic 2. Types of software testing
Topic 3. Organization of the software testing process
Topic 4. Evaluation of software quality
Topic 5. Means of optimization of the testing and quality control process
Exam

4. Educational materials and resources

Primary literature:

1. Pogorelov Volodymyr. Components of Software Engineering. Part 4. Software Quality and Testing. Google
Classroom, access is granted to registered students.

2. Software Testing and Analysis: Process, Principles and Techniques, by Mauro Pezze and Michal Young,
John Wiley & Sons

3. The Art of Software Testing, Second Edition by Glenford J. Myers et al. Digital copy available in DePaul
library.

4. Software Engineering: A Practitioner's Approach, Roger S Pressman, McGraw-Hill. Chapters 13 and 14.

Use to master the practical skills of the discipline. The materials are freely available on the Internet.

Educational content

5. Methods of mastering an educational discipline (educational component)

No Type of training session Description of the training session

Topic 1. Introduction to search engines and services

1 Lecture 1. Introduction to
software testing

Definition of software testing. Purpose and goals of software testing.
Types of software testing. The software development life cycle and
the role of testing at each stage. The importance of software testing.
Advantages of software testing.

Task on self-study No. 1.

2 Lecture 2. Inspection in
testing. Basic concepts
and characteristics of
inspection.

Definition of Software Inspection. Benefits of Software Inspection.
Inspection process and methodology. Roles and responsibilities in
Software Inspection. Types of software inspection. Tools and
techniques used for Software Inspection

Task on self-study No. 2.

3 Lecture 3. Static analysis.
Basic concepts and
characteristics, means of
static analysis.

Definition of static analysis. Advantages of static analysis. Types of
static analysis (source code analysis, data flow analysis, etc.). Tools
and methods used in static analysis. Integration of static analysis
into the software development life cycle. Limitations of static
analysis.

Task on self-study No. 3.

Topic 2. Types of software testing

4 Lecture 4. Modular
testing. Tasks, input data,
main testing steps, unit
testing completion
conditions.

Definition of unit testing. Advantages of unit testing. Module testing
process and methodology. Writing practical unit tests. Test Driven
Development (TDD). Tools and techniques used in unit testing.

Task on self-study No. 4.

5 Lecture 5. Integration
testing and system testing.

Definition of integration and system testing. Advantages of
integration and system testing. Process and methodology of
integration testing. System testing process and procedure. Types of
integration and system testing. Tools and methods used in
integration and system testing.

Task on self-study No. 5.

6 Lecture 6. Regression
testing, basic concepts and
characteristics, key stages.

Definition of regression testing. Advantages of regression testing.
Process and methodology of regression testing. Types of regression
testing (manual and automatic regression testing). Strategies for
effective regression testing. Tools and techniques used in regression
testing.

Task on self-study No. 6.
7 Lecture 7. Functional

testing.
Definition of functional testing. Advantages of functional testing.
Process and methodology of functional testing. Types of functional

testing (black box testing, white box testing, etc.). Writing practical
functional tests. Tools and techniques used in functional testing.

Task on self-study No. 7.

8 Lecture 8 . Structural
testing

Definition of structural testing. Advantages of structural testing.
Process and methodology of structural testing. Types of structural
tests (branch testing, state testing, etc.). Writing practical structural
tests. Tools and methods used in structural testing.

Task on self-study No. 8.

9 Lecture 9 . Testing object-
oriented software

Definition of object-oriented software. Strategies for testing object-
oriented software (imitation, polymorphism, encapsulation). Writing
practical tests for object-oriented software. Tools and methods used
in testing object-oriented software.

Task on self-study No. 9.

10 Computer workshop 1.
Testing object-oriented
software

Task: Using software to implement a module for testing, the types of
which are discussed in Topic 2.

Task on self-study No. 10.

Topic 3. Organization of the software testing process

11 Lecture 10. Choosing a
test case

Determination of test case selection. The process and methodology
of selecting test cases. Factors to consider when selecting test cases
(coverage, risk, etc.). Types of test case selection methods
(equivalence distribution, analysis of boundary values, etc.). Tools
and techniques used to select test cases.

Task on self-study No. 11.

12 Lecture 11. Performance
testing

Definition of performance testing. Benefits of performance testing.
Performance testing process and methodology. Types of
performance testing (load testing, stress testing, etc.). Performance
testing criteria (response time, throughput, etc.). Tools and
techniques used in performance testing

Task on self-study No. 12.

13 Lecture 12. Security
testing

Definition of security testing. Benefits of security testing. Security
testing process and methodology. Types of security testing
(penetration testing, vulnerability scanning, etc.). Security check
criteria (confidentiality, integrity, availability). Tools and techniques
used in security testing.

Task on self-study No. 13.

14 Lecture 13. Testing web
applications

Definition of web application testing. Benefits of web application
testing. The process and methodology of testing web applications.
Writing practical tests for web applications. Tools and techniques
used to test web applications.

Task on self-study No. 14.

15 Computer workshop 2.
Organization of the
software testing process

Task: Using software to implement a module for testing, the types of
which are discussed in Topic 3.

Task on self-study No. 15.

Topic 4. Evaluation of software quality

16 Lecture 14. Graphical User
Interface (GUI) Testing

Definition of GUI testing. GUI testing process and methodology. GUI
testing criteria (usability, accessibility, consistency, etc.). Tools and
techniques used for GUI testing.

Task on self-study No. 16.

1 7 Lecture 15. Usability
testing

Definition, benefits, process and methodology of usability testing.
Types (expert review, heuristic evaluation, etc.). Usability testing
criteria. Tools and methods used for usability testing.

Task on self-study No. 17.

18 Lecture 16. Error-based
testing

Definition of error-based testing. Advantages of error-based testing.
Error-based testing process and methodology. Types of error-based
testing (fault injection, mutation testing, etc.). Fault-based testing
criteria (detection rate, false alarm rate, etc.). Tools and techniques
used in error-based testing.

Task on self-study No. 18.

Topic 5. Means of optimization of the testing and quality control process

19 Lecture 17. Automation
and testing tools

Defining test automation and tools. Advantages of test automation.
Test automation process and methodology. Types of test
automation. Criteria for choosing test automation tools (coverage,
reliability, etc.). Means and methods used for test automation.

Task on self-study No. 19.

20 Computer workshop 3.
Using JUnit for software
testing.

Task: Using software to implement a software testing module.

Task on self-study No. 20.

21 Lecture 18. Planning and
monitoring of the software
quality process

Defining the process of software quality planning and monitoring.
Planning and monitoring process and methodology. Types of
software quality indicators (reliability, efficiency, etc.). Methods of
improving the software quality process (Six Sigma, Total Quality
Management, etc.). Tools and techniques used to plan and monitor
the software quality process.

Task on self-study No. 21.

Modular control work

6. Independent work of a student/graduate student

The discipline "Components of Software Engineering. Part 4. Software Quality and Testing" is based on
independent preparations for classroom classes on theoretical and practical topics.

No.
z/p

The name of the topic submitted for independent processing Number
of hours

Literature

1 Preparation for lecture 1 1 1-4

2 Preparation for lecture 2 1 1-4

3 Preparation for lecture 3 1 1-4

4 Preparation for lecture 4 1 1-4

5 Preparation for lecture 5 1 1-4

6 Preparation for lecture 6 1 1-4

7 Preparation for the computer workshop 1 3 1-4

8 Preparation for lecture 7 1 1-4

9 Preparation for lecture 8 1 1-4

10 Preparation for lecture 9 1 1-4

11 Preparation for the computer workshop 2 3 1-4

12 Preparation for lecture 10 1 1-4

13 Preparation for lecture 11 1 1-4

14 Preparation for lecture 12 1 1-4

15 Preparation for lecture 13 1 1-4

16 Preparation for lecture 14 1 1-4

17 Preparation for lecture 15 1 1-4

18 Preparation for lecture 16 1 1-4

19 Preparation for lecture 17 1 1-4

20 Preparation for the computer workshop 3 1 1-4

21 Preparation for lecture 18 1 1-4

22 Preparation for modular control work 9 1-4

23 Preparation for the exam 36 1-4

Policy and control

7. The policy of academic discipline (educational component)

The policy and principles of academic integrity are defined in Chapter 3 of the Code of Honor of the
National Technical University of Ukraine "Ihor Sikorsky Kyiv Polytechnic Institute". More details:
https://kpi.ua/code.

8. Types of control and rating system for evaluating learning outcomes (RSO)

During the semester, students perform three computer practicals. The maximum number of points for
each computer workshop: 10 points.

Points are awarded for:
- the quality of performance of the computer workshop: 0-6 points;
- answer during the defence of the computer workshop: 0-2 points;
- timely presentation of work for defence: 0-2 points.

Performance evaluation criteria:

6 points – the work is done qualitatively, in full;
3-5 points – the work is done qualitatively, in full, but has shortcomings;
1-2 points – the work is completed in full but contains significant errors;
0 points - the work is not completed in full.

Answer evaluation criteria:
2 points – the answer is complete, and well-argued;
1 point – there are significant errors in the answer;
0 points - there is no answer, or the answer is incorrect.

Criteria for evaluating the timeliness of work submission for defence:
2 points – the work is presented for defence no later than the specified deadline;
0 points – the work is submitted for defence later than the specified deadline.

The maximum number of points for performing and defending computer practicals:
10 points × 3 comp. practice = 30 points.

During the semester, students complete a test. The task consists of 3 theoretical and 2 practical questions.
The answer to each question is evaluated by 4 points.

Evaluation criteria for each test question:
4 points – the answer is correct, complete, and well-argued;
2-3 points - in general, the answer is correct but has flaws;
1 point – there are significant errors in the answer;
0 points - there is no answer, or the answer is incorrect.

The maximum number of points for a modular control work:
4 points × 5 questions = 20 points.

The rating scale for the discipline is equal to the following:
R = R С = R com.practice + R MKR + R exam = 30 points + 20 points + 50 points = 100 points.

Calendar control: is conducted twice a semester as a monitoring of the current state of fulfilment of the
syllabus requirements.
At the first certification (8th week), the student receives "credited" if his current rating is at least 10 points
(50% of the maximum number of points a student can receive before the first certification).
At the second certification (14th week), the student receives "passed" if his current rating is at least 20
points (50% of the maximum number of points a student can receive before the second certification).

Semester control: exam
Conditions for admission to semester control:
With a semester rating (R C) of at least 30 points and the admission of all the work of the computer
workshop, the student is admitted to the exam. After passing the exam, a grade is assigned according to
the table (Table of correspondence of rating points to grades on the university scale).

Completion and defence of a computer workshop is a necessary condition for admission to the exam.

Table of correspondence of rating points to grades on the university scale :
Scores Rating
100-95 Perfectly
94-85 Very good
84-75 Fine
74-65 Satisfactorily
64-60 Enough

Less than 60 Unsatisfactorily
Admission conditions not met Not allowed

9. Additional information on the discipline (educational component)

The list of questions submitted for semester control is given in Appendix 1.

The working program of the academic discipline (syllabus):

Compiled by PhD, assistant Pogorelov V.V.; graduate student Ilyin M.O.

Adopted by Computer Systems Software Department (protocol № 12 from 26.04.23)

Approved by the Faculty Board of Methodology (protocol № 10 from 26.05.23)

Appendix 1. List of issues that are submitted to the semester control

1. What is software testing and why is it an important stage of software development?
2. What is the difference between Inspection testing and static testing?
3. What is unit testing, and how does it differ from integration and system testing?
4. What is regression testing, and why is it performed?
5. What is functional testing, and how is it performed?
6. What is structural testing, and what methods are used?
7. Selection of test cases for the software system.
8. How does object-oriented software testing differ from other types of software?
9. What is performance testing, and how is it performed?
10. What is security testing, and what methods are used?
11. What is web application testing, and what methods are used?
12. What is Graphical User Interface (GUI) testing, and what methods are used?
13. What is usability testing, and what methods are used?
14. What is error-based testing, and what methods are used?
15. What is test automation, and what tools are used?
16. What is the role of planning and monitoring in the software quality process?
17. Software quality indicators.
18. What is the difference between unit testing and integration testing?
19. What is the purpose of regression testing, and how is it performed?
20. What is the difference between security testing and performance testing?

