

Department of computer
systems software

COMPONENTS OF SOFTWARE ENGINEERING.
PART 3. SOFTWARE ARCHITECTURE

Syllabus
Requisites of the Course

Cycle of Higher Education First cycle of higher education (Bachelor's degree)
Field of Study 12 Information Technologies
Specialty 121 Software engineering
Education Program Software Engineering of Multimedia and Information Retrieval Systems
Type of Course Normative
Mode of Studies full-time
Year of studies, semester 2nd year, 4th semester
ECTS workload 36 hours for lectures, 18 hours for laboratory work, 96 hours for self-study.
Testing and assessment Exam, modular control work, calendar control
Course Schedule According to http://roz.kpi.ua/
Language of Instruction English
Course Instructors Inna Saiapina, PhD, Assoc. Prof., saiapina@pzks.fpm.kpi.ua
Access to the course Google classroom. To be provided to registered students.

Outline of the Course

1. Course description, goals, objectives, and learning outcomes

The study of the "Components of software engineering. Part 3. Software architecture" allows students to
develop the competencies necessary for solving practical tasks of professional activities related to the
design, modeling and development of software for multimedia and information-search systems.

The purpose to study the course "Components of software engineering. Part 3. Software architecture" is
the formation of students' understanding of the basic principles and mechanisms and the ability to design,
model and program implementation of multimedia and information-search systems and applications
working independently or in a team.

The subject of the "Components of software engineering. Part 3. Software architecture" course are
methods, methodologies and approaches to building a software architecture, its component modules and
relationships between them.

The study of the "Components of software engineering. Part 3. Software architecture» course contributes
for students to the formation of general (GC) and professional competences (PC), necessary for solving
practical problems of professional activity related to modeling, designing and software development:
PC01 Ability to identify, classify and formulate software requirements.
PC02 Ability to participate in software design, including its structure, behavior and functioning processes
modeling (formal description).
PC03 Ability to develop software systems architectures, modules and components.
PC04 Ability to formulate and ensure software quality requirements in accordance with customer
requirements, specifications and standards.
PC05. Ability to follow specifications, standards, rules and recommendations in the professional field
during the life cycle processes implementation.

PC07 Knowledge of information data models, the ability to create software for data storage, retrieval and
processing.
PC08 Ability to apply fundamental and interdisciplinary knowledge to successfully solve software
engineering problems.
PC10 Ability to accumulate, process and systematize professional knowledge about software creation and
maintenance, and determination of the importance of lifelong learning.
PC11. Ability to implement phases and iterations of the life cycle of the software systems and information
technology based on appropriate models and approaches to software development.
PC12 Ability to carry out the system integration process, apply change management standards and
procedures to maintain software integrity, overall functionality and reliability.
PC13 Ability to reasonably select and master software development and maintenance tools.
PC21. Ability to identify, analyze and document software requirements for multimedia and information
retrieval systems
PC22. Ability to create innovative startup projects, calculate basic technical and economic indicators and
develop business models of multimedia software and information retrieval systems innovative startup
projects that have commercial potential for investment.
Studying the course "Components of software engineering. Part 3. Software architecture” contributes to
students' formation of the following program learning outcomes (PLO) according to the educational
program:
PLO01 To analyze, purposefully search and select the necessary information and reference resources and
knowledge to solve professional problems, taking into account modern advances in science and
technology.
PLO02 To know the professional ethics code, understand the social significance and cultural aspects of
software engineering and adhere to them in professional activities.
PLO03 To know the software life cycle basic processes, phases and iterations.
PLO04 To know and apply professional standards and other regulatory documents in the field of software
engineering.
PLO06 To know and apply relevant mathematical concepts, domain methods, system and object-oriented
analysis and mathematical modeling for software development.
PLO07 To know and to apply in practice the fundamental concepts, paradigms and basic principles of the
functioning of language, instrumental and computational tools of software engineering.
PLO08 To know and to be able to develop a human-machine interface.
PLO09 To be able to use collecting, formulating and analyzing software requirements methods and tools.
PLO10 To conduct a pre-project survey of the subject area, system analysis of the design object.
PLO11 To select initial data for design, guided by formal methods of describing requirements and
modeling.
PLO13 To know and apply methods of developing algorithms, designing software and data and knowledge
structures.
PLO14 To apply in practice instrumental software tools for domain analysis, design, testing, visualization,
measurement and documentation of software.
PLO15 To choose programming languages and development technologies to solve the problems of
creating and maintaining software.
PLO16 To have the software development, design approval and all types of software documentation
release skills.
PLO17 To be able to apply methods of component software development.
PLO18 To know and be able to apply information technology of processing, storage and transmission of
data.
PLO19 To know and be able to apply software verification and validation methods.
PLO20 To know approaches to evaluation and quality assurance of software.
PLO23 To be able to document and present the software development results.
PLO31 To be able to identify, analyze and document software requirements for multimedia and
information retrieval systems

PLO32 To be able to develop and analyze full cycle models for multimedia and information retrieval
systems software creation.
PLO33 To be able to organize a software product management complete cycle.
PLO34 To be able to create innovative startup projects of designing multimedia and information-search
systems software that have commercial potential for investment.
PLO35 To be able to develop and analyze business models of innovative startup projects of developing
multimedia and information retrieval systems software that have commercial potential for investment.
PLO36 To be able to manage the creation and implementation of software projects in accordance with
international standards.
PLO38 To be able to apply programming technologies for multimedia and information retrieval systems
software development.

2. Prerequisites and post-requisites of the course (the place of the course in the scheme of
studies in accordance with curriculum)

To the successful study of the course "Components of software engineering. Part 3. Software architecture"
precedes the study of the course "Components of Software Engineering" of the bachelor's study curriculum
in the specialty 121 Software engineering.

Theoretical knowledge and practical skills, received during the study of the course "Components of
software engineering. Part 3. Software architecture" contribute to the assimilation of material from the
courses "Components of software engineering. Part 4. Software quality and testing", "Components of
software engineering. Course work", "Software security", "Bachelor Thesis" and "Pre-diploma practice" of
the bachelor's study curriculum in the specialty 121 Software engineering.

3. Content of the course

Course "Components of software engineering. Part 3. Software architecture" involves the study of the
following topics:

Topic 1. Introduction. Basic definitions and concepts.

Topic 2. Architecture planning and design.

Topic 3. Object analysis and modeling.

Topic 4. Design patterns.

Topic 5. Architectural styles and patterns.

Topic 6. Applied and theoretical methods of programming.

Topic 7. Software verification and validation.

Modular control work.

Exam

4. Coursebooks and teaching resources

Main literature:

1. Educational and methodological materials on the subject "Components of software engineering.
Part 3. Software architecture".
Use to master the practical skills of the discipline. The materials are in Google classroom; access is
to be provided to registered students.

Additional literature:

2. L. Bass, P. Clements, R. Kazman. Software Architecture in Practice. Addison-Wesley, 2021. 497 p.

3. M. Richards, N. Ford. Fundamentals of Software Architecture, O'Reilly Media, 2021.
4. M. Richards. Software Architecture Patterns. O'Reilly Media, 2015. 55 p.

5. R. Martin. Clean Architecture: A Craftsman's Guide to Software Structure and Design. Pearson, 2017.
432 p.

6. B. Rumpe. Agile Modeling with UML. Springer, 2017, 388 p. DOI 10.1007/978-3-319-58862-9
7. E. Freeman, E. Robson. Head First Design Patterns: Building Extensible and Maintainable Object-

Oriented Software. O'Reilly Media, 2021, 669 p.

Educational content

5. Methodology for mastering the course (educational component)

No Type of training session Description of the training session

Topic 1. Introduction. Basic definitions and concepts

1 Lecture 1. Introduction.
Basic definitions and
concepts. (2 ac.h.)

Introduction. Information on the educational process
organization. Useful resources. Academic integrity.
Evaluation system. What this course will teach you. Life
cycle of software development. The concept of software
architecture.
Tasks on self-study: item 6, number 1.

Topic 2. Architecture planning and design
2 Lecture 2. Life cycle

standards and models (2
ac.h.)

Cascade model. Incremental model. Spiral model.
Evolutionary model. Basic software development
methodologies. Agile SCRUM. Extreme Programming,
SAFE, Kanban.
Tasks on self-study: item 6, number 2.

3 Laboratory work 1. (2
ac.h.)

Analysis and formation of software requirements
Assignment on self-study: item 6, number 3.

4 Lecture 3. Architecture
and system quality
attributes (2 ac.h.)

Quality attribute scenarios. Readiness. Modifiability,
Productivity, Security. Controlability.
Assignment to self-study: item 6, number 4.

Topic 3. Object analysis and modeling
5 Lecture 4. Object-

oriented analysis and
design (2 ac.h.)

Object-oriented approach and basic principles.
Compromises in requirements and design. Advantages of
object-oriented architecture.
Tasks on self-study: item 6, number 5.

6 Laboratory work 2. (2
ac.h.)

Fundamentals of software modeling.
Tasks on self-study: item 6, number 6

7 Lecture 5. Object-
oriented modeling (2
ac.h.)

UML class diagrams. Specialized UML diagrams.
Concepts and elements of DDD. Cohesion as an internal
characteristic of the module. Coupling as an external
characteristic of the module.
Tasks on self-study: item 6, number 7.

Topic 4. Design patterns
8 Lecture 6. Design

patterns (4 ac.h.)
The concept of pattern design. Types of patterns.
Generating patterns. Structural patterns. Behavioral
patterns.
Tasks on self-study: item 6, number 8.

9 Laboratory work 3. (2
ac.h.)

Modeling of the system behavior at the logical level
(development of the state diagram)
Tasks on self-study: item 6, number 9.

Topic 5. Architectural styles and patterns
10 Lecture 7. Architectural

patterns
Types of architectural patterns. Multilayer architecture.
Event-driven architecture. Microkernel architecture.

databases (4 ac.h.) Architecture of microservices and others. Advantages,
disadvantages and application examples.
Tasks on self-study: item 6, number 10.

11 Laboratory work 4. (4
ac.h.)

A study of software design architectural patterns.
Tasks on self-study: item 6, number 11

12 Lecture 8. Monolithic
architecture (2 ac.h.)

Monolithic and distributed architecture. Big Ball of Mud.
Misconceptions in software development.
Tasks on self-study: item 6, number 12.

13 Lecture 9. Multi-layer
software architecture (2
ac.h.)

Logical structure of multilayer architecture. The concept
of levels and layers. Multi-layered architecture design
patterns. Designing layers.
Assignment on self-study: p. 6, No. 13.

14 Lecture 10. Service-
oriented architecture (2
ac.h.)

Web services, their composition. REST architecture,
design principles.
Tasks on self-study: item 6, number 14.

15 Laboratory work 5. (4
ac.h.)

Modeling of the system behavior at the logical level
(development of sequence and cooperation diagrams)
Tasks on self-study: item 6, number 15

16 Lecture 11. Microkernel
and Pipeline architecture
(2 ac.h.)

Characteristics, basic principles, examples of use.
Tasks on self-study: item 6, number 16

17 Lecture 12. Event-driven
architecture and space-
based architecture (2
ac.h)

Characteristics, basic principles, examples of use.
Tasks on self-study: item 6, number 17

Topic 6. Applied and theoretical methods of programming

18 Lecture 13. Applied
programming (2 ac.h.)

The main types of application programming and their
features. Principles of DRY, KISS, YAGNI. SOLID.
Tasks on self-study: Item 6, No. 18.

29 Lecture 14. Theoretical
programming (2 ac.h.)

The main types of theoretical programming and their
features.
Tasks on self-study: Item 6, No. 19

20 Laboratory work 6. (4
ac.h.)

Development of the physical representation model of an
informational system (development of a diagram of
components and deployment)
Tasks on self-study: Item 6, No. 20

Topic 7. Software verification and validation
21 Lecture 15. Software

verification and
validation (2 ac.h.)

Approach to requirements scenario validation.
Verification of object models and composition of
components.
Tasks on self-study: item 6, number 21.

22 Modular control work (2 acc. hours)
Tasks on self-study: item 6, number 22

6. Self-study work of a student

The course "Components of software engineering. Part 3. Software architecture " is based on self-study
preparations for classroom classes on theoretical and practical topics.

No The name of the topic submitted for independent processing Number of
hours

literature

1 Preparation for the lecture 1 2 1-7

2 Preparation for lecture 2 2 1, 6

3 Preparation for laboratory work 1 5 1, 2

4 Preparation for the lecture 3 2 2

5 Preparation for the lecture 4 2 1,

6 Preparation for laboratory work 2 5 1-3, 5, 6

7 Preparation for the lecture 5 2 1-3, 5

8 Preparation for the lecture 6 2 1, 7

9 Preparation for laboratory work 3 5 1-3, 5, 6

10 Preparation for the lecture 7 2 1, 3 – 5

11 Preparation of laboratory work 4 5 1, 3 – 5

12 Preparation for the lecture 8 2 1, 3-5

13 Preparation for the lecture 9 2 1, 3-5

14 Preparation for lecture 10 2 1, 3, 4

15 Preparation of laboratory work 5 5 1-8, 10, 11

16 Preparation for lecture 11 2 1, 8, 9

17 Preparation for lecture 12 2 1, 8, 9

18 Preparation for lecture 13 2 1, 4

19 Preparation for lecture 14 2 1, 4

20 Preparation of laboratory work 6 5 1, 4-6, 7, 10, 12

21 Preparation for modular control work 8 1-12

22 Preparation for the exam 30 1-12

Policy and Assessment

7. Course policy

• Attending lectures is mandatory.
• Attending laboratory classes can be occasional and as needed to defend laboratory work.

• Rules of behavior in classes: activity, respect to the others, turning off phones.

• Adherence to the policy of academic integrity.

• Rules for the laboratory work defence: the work must be done according to the student's variant,
which is determined by his number in the group list, or the topic and subject area approved by the
teacher.

• The rules for assigning bonus and penalty points are as follows.
Bonus points are awarded for:
- activity in lectures and laboratory classes. The maximum number of points for all classes is 5 points.
Penalty points are calculated for:
- plagiarism The performed laboratory work does not correspond to the task option, the identity of
laboratory work reports among different works (number of points: 5 points).

8. Monitoring and grading policy

During the semester, students perform 6 laboratory works. The maximum number of points for laboratory
work: 5 points.

Points are awarded for:
- quality of laboratory work (report): 0-2 points;
- survey (test) during the defense of laboratory work: 0-2 points;
- timely submission of work for defense: 0-1 point.

Criteria for evaluating the quality of laboratory work (report):
2 points – the work is done qualitatively, in full;
0-1 point – the work is incomplete or contains errors.

Evaluation criteria for the survey on the protection of laboratory work:
2 points – the answer is complete, well-argued;
1 point – there are errors in the answer;
0 points - there is no answer or the answer is incorrect.

If the laboratory work is re-submitted for examination, the total maximum grade for the laboratory work
is reduced by 1 point.

The maximum number of points for performing and defending laboratory work:
RL= 6 laboratory works × 5 points = 30 points.

The task for the modular control work consists of 14 test questions - 8 questions with one correct answer
and 6 questions with several correct answers. Each question with one correct answer is valued at 1 point,
each question with several correct answers are valued at 2 points.
Evaluation criteria for each test question with one correct answer:
1 point – the answer is correct;
0 points - there is no answer or the answer is incorrect.

Evaluation criteria for each multiple-choice test question:
2 points – all correct answers and no incorrect answers are selected;
1 point – at least 50% of all correct answers are chosen;
0 points – no answer or all answers are incorrect.

The maximum number of points for a modular control work:
RMKR = 1 point × 8 test questions with one correct answer + 2 points × 6 questions with several correct
answers = 20 points.
The rating scale for the course is equal to:
R = Rc+ Rexam = RL + RMKR+ Rexam = 30 points + 20 points + 50 points = 100 points.

Calendar control: is conducted twice a semester as a monitoring of the current state of fulfillment of the
syllabus requirements.
At the first certification (8th week), the student receives "credited" if his current rating is at least 8 points
(50% of the maximum number of points a student can receive before the first certification).
At the second certification (14th week), the student receives "passed" if his current rating is at least 15
points (50% of the maximum number of points a student can receive before the second certification).

Semester control: exam
Conditions for admission to semester control:
With a semester rating (Rc) of at least 30 points and the enrollment of all laboratory work, the student is
admitted to the exam. After passing the exam, a grade is assigned according to the table (Table of
correspondence of rating points to grades on the university scale).

A necessary condition for admission to the exam is the performance and defense of laboratory work.
The exam work contains 3 questions: 2 theoretical and 1 practical-oriented. The answer to each theory
question is worth 15 points, and the answer to a practical question is worth 20 points.

Evaluation criteria for each theoretical question:
13-15 points – the answer is correct, complete, well-argued;
9-12 points – the answer is correct, detailed, but the reasoning is incomplete;
5-8 points - in general, the answer is correct, but there are errors;
1-4 points – there are significant errors in the answer;
0 points - there is no answer or the answer is incorrect.

Criteria for evaluating a practically-oriented question:

18-20 points – the task was completed correctly, a full thorough explanation of the chosen solutions for
the task was provided;
14-17 points – tasks and explanations of the chosen solutions are completed at a basic level, but not all
features are taken into account;
9-13 points – the performance of the task and/or the reasoning of the chosen decisions contains a number
of inaccuracies or the reasoning of the decisions is absent;
5-8 points – when completing the task, significant mistakes were made, leading to a false result;
1-4 points – the task has been completed, but the correct answers have not been received;
0 points - there is no answer or the answer is incorrect.

Table of correspondence of rating points to grades on the university scale:

Scores Rating
100-95 Perfectly
94-85 Very good
84-75 Fine
74-65 Satisfactorily
64-60 Enough

Less than 60 Unsatisfactorily
Admission conditions not met Not allowed

Syllabus of the course
Is designed by Inna Saiapina, Ph.D., Assoc. Prof.
Adopted by Computer Systems Software Department (protocol № 12 from 26.04.23)

Approved by the Faculty Board of Methodology (protocol № 10 from 26.05.23)

