

Computer Systems Software
Department

Fundamentals of Programming.

Part 2. Programming Methodologies
Syllabus

 Requisites of the Course

Cycle of Higher Education First cycle of higher education (Bachelor’s degree)
Field of Study 12 Information Technologies
Speciality 121 Software engineering
Education Program Software Engineering of Multimedia and Information Retrieval Systems
Type of Course Normative
Mode of Studies full-time
Year of studies, semester 1 year (2 semester)

ECTS workload 5.5 credits (ECTS). Time allotment - 165 hours, including 90 hours of classroom
work, and 75 hours of self-study.

Testing and assessment 2 semester – Exam
Course Schedule 2(3) classes per week by the timetable http://roz.kpi.ua/
Language of Instruction English

Course Instructors

Lecturer: PhD, Associate Professor, Yuliia Boiarinova, mobile +380671751308,
email ub@ua.fm
Teacher of practical work: PhD, Associate Professor, Yuliia Boiarinova, mobile
+380671751308, email ub@ua.fm
Teacher of laboratory work: PhD, Associate Professor, Yuliia Boiarinova, mobile
+380671751308, email ub@ua.fm

Access to the course https://t.me/+zub7kDn0N2g0Zjc6
 https://classroom.google.com/c/NTQ2MDgwNTcwMjA3?cjc=nvsujjp

 Outline of the Course

1. Course description, goals, objectives, and learning outcomes

The discipline "Fundamentals of Programming. Part 2. Programming Methodologies" is aimed at
studying the theoretical and methodological foundations of building programs in the programming
language C, mastering the means of creating software, gaining practical skills in software development in
solving practical problems. Such theoretical and practical training forms basic skills in programming and
is the basis for successful mastering of professional disciplines.

The purpose of the discipline is to form students' ability to develop software for solving applied
problems of varying complexity in the C programming language.

Studying the discipline "Fundamentals of Programming. Part 2. Programming Methodologies"
generates general competence (GC) and professional competence (PC):
GC 01 Ability to abstract thinking, analysis and synthesis.
GC 06 Ability to search, process and analyze information from various sources.
PC 01 Ability to identify, classify and formulate software requirements.
PC 02 Ability to participate in software design, including its structure, behavior and functioning processes
modeling (formal description).

PC 03 Ability to develop software systems architectures, modules and components.
PC07 Knowledge of information data models, the ability to create software for data storage, retrieval and
processing.
PC 08 Ability to apply fundamental and interdisciplinary knowledge to successfully solve software
engineering problems.
PC 10 Ability to accumulate, process and systematize professional knowledge about software creation and
maintenance, and determination of the importance of lifelong learning.
PC 11 Ability to implement phases and iterations of the life cycle of the software systems and information
technology based on appropriate models and approaches to software development.
PC 13 Ability to reasonably select and master software development and maintenance tools.
PC 14 Ability to algorithmic and logical thinking.

Programming Learning Outcomes (PLO) of the discipline "Fundamentals of Programming. Part 2.
Programming Methodologies" under the educational program:
PLO 01 To analyze, purposefully search and select the necessary information and reference resources and
knowledge to solve professional problems, taking into account modern advances in science and technology.
PLO03 To know the software life cycle basic processes, phases and iterations.
PLO06 Ability to select and use the appropriate task of software development methodology.
PLO07 To know and to apply in practice the fundamental concepts, paradigms and basic principles of the
functioning of language, instrumental and computational tools of software engineering.
PLO13 To know and apply methods of developing algorithms, designing software and data and knowledge
structures.
PLO15 To choose programming languages and development technologies to solve the problems of creating
and maintaining software.
PLO18 To know and be able to apply information technology of processing, storage and transmission of data.
PLO38 To be able to apply programming technologies for multimedia and information retrieval systems
software development.

2. Prerequisites and post-requisites of the course (the place of the course in the scheme of
studies in accordance with curriculum)

To successfully master the discipline "Fundamentals of Programming. Part 2. Programming

Methodologies" it is necessary and sufficient to have training at the secondary school level, basic
knowledge of working with a PC, if possible, the basics of programming in the amount provided by the high
school program.

To the successful study of the discipline "Fundamentals of Programming. Part 2. Programming
Methodologies" precedes the study of the disciplines of the school course of mathematics (for the analysis
of numerical data, which are described by mathematical laws) and computer science (for means of
processing and storing data on a personal computer).

Received during the assimilation of the discipline"Fundamentals of Programming. Part 2.
Programming Methodologies" theoretical knowledge and practical skills are necessary for most disciplines
of the curriculum and the educational program as a whole, in particular, the study of the disciplines
"Programming", "Databases", "Software Engineering Components" and other disciplines of the curriculum
of undergraduate training in the specialty 121 Software Engineering, as well as for successful completion
of pre-diploma practice, course and diploma projects in the specialty 121 Software Engineering.

3. Content of the course
Topic 1. Elements of structural programming.

Topic 2. Development of programs using pointers

Topic 3. Use functions to work with characters and strings

Topic 4. Files.

Topic 5. Basics of object-oriented programming

4. Coursebooks and teaching resources

Basic
1. The C Programming Language/ Kernighan,Brian; Ritchie, Dennis M. - Englewood Cliffs, NJ:Prentice
Hall, 1988 -288p.

2. C: How to Program/ Paul J. Deitel, Harvey M. Deitel,Pearson Prentice Hall, 2010 -998p.
Aditional

3. Sibling rivalry: C and C++/ Stroustrup, Bjarne AT&T Labs. Archived from the original on August 24,
2014.

4. https://www.programiz.com/c-programming

5. https://www.tutorialspoint.com/cprogramming/index.htm

6. https://www.cprogramming.com/

 Educational content

5. Methodology

№ Type of study Description of the lesson

II semester

Topic 1. Elements of structural programming.

1. Lection 1. Elements of
structural programming

Memory classes. Scope of variables. Global, local variables
Self study: item 6, N1

2. Computer lesson Task: create program with different class of memory
Self study:item 6, N2

3. Lection 2. Elements of
structural programming

Preprocessor. Header files. Creating a library. Self
study: item 6, N3

4. Computer lesson Task: creating library
Self study: item 6, N4

5. Practical lesson Functions with different number of parameters. Recursions
Self study: item 6, N5

6. Lection 3. Structures. Initialization of structures. Access to structure elements.
Operations on structure type variables.
Self study: item 6, N6

7. Computer lesson Task: create program by variant with structures
Self study: item 6, N7

8. Lection 4.Union Union Initialization. Access to union elements.
Operations on type variables of unions.
Self study: item 6, N8

9. Computer lesson Task: create program by variant with structures
Self study: item 6, N9

10. Practical lesson Transfer function by parameter
Self study: item 6, N10

11. Lection 5. Bitwise
operations

Bitwise operations: shift, “and”, “or”, “xor”
Self study: item 6, N11

12. Computer lesson Task: create program by variant with structures (continue)
Self study: item 6, N12

Topic 2. Development of programs using pointers

13. Lection 6. Pointers Pointer operations
Self study: item 6, N13

14. Computer lesson Task: create program by variant with pointers
Self study: item 6, N14

15. Practical lesson Dynamic memory allocation.
Self study: item 6, N15

16. Lection 7. Pointers Linking pointers to arrays
Self study: item 6, N16

17. Computer lesson Task: create program by variant with pointers and arrays
Self study: item 6, N17

18. Lection 8. Dynamic data
structures

Dynamic data structures: stacks, queues, lists.
Generation and destruction of dynamic objects.
Self study: item 6, N18

19. Computer lesson Task: create program by variant with dynamic data
structures
Self study: item 6, N19

20. Practical lesson Dynamic memory redistribution.
Self study: item 6, N20

21. Test Self study: item 6, N21

22. Lection 9. Dynamic data
structures

Dynamic data structures: single-directional and
bidirectional lists.
Self study: item 6, N22

23. Computer lesson Task:create program by variant with dynamic data
structures(continue)
Self study: item 6, N23

Topic 3. Use functions to work with characters and strings

24. Lection 10. Characters in
the language of C.

Basic standard character processing functions. ASCII
character codes.
Self study: item 6, N24

25. Computer lesson Task:create program by variant with charters data
Self study: item 6, N25

26. Practical lesson Working with characters and strings
Self study: item 6, N26

27. Lection 11. Strings Features of the structure of strings in C. Declaration of arrays
of strings. Operations by strings
Self study: item 6, N27

28. Computer lesson Task: create program by variant with string
Self study: item 6, N28

Topic 4. Files.

29. Lection 12. Files. Files. Logical and physical file. File structure
Self study: item 6, N29

30. Computer lesson Task:create program by variant with file
Self study: item 6, N30

31. Practical lesson Using serial access files
Self study: item 6, N31

32. Lection 13. Files. General information about streaming I / O libraries. Functions
for sharing streams. Serial access files. Creating, reading,
writing data
Self study: item 6, N32

33. Computer lesson Task: create program by variant with file(continue)
Self study: item 6, N33

34. Lection 14. Files. Direct (random) access files. Creating, reading, writing data.
Self study: item 6, N34

35. Computer lesson Task: create program by variant with file(continue)
Self study: item 6, N35

36. Practical lesson Using files with direct access
Self study: item 6, N36

37. Lection 15. Files. Text files. Creating, reading, writing data.
Self study: item 6, N37

38. Computer lesson Task: create program by variant with file(continue)
Self study: item 6, N38

39. Lection 16. Files. Binary files. Creating, reading, writing data.
Self study: item 6, N39

40. Computer lesson Task: create program by variant with file(continue)
Self study: item 6, N40

41. Practical lesson Using text files
Self study: item 6, N41

42. Lection 17. Modular
programming.

Modular programming. Dividing the program into separate
modules
Self study: item 6, N42

43. Computer lesson Task: create program with modular programming
Self study: item 6, N43

Topic 5. Basics of object-oriented programming

44. Lection 18. Basics of
object-oriented
programming

Basic concepts of OOP. Properties and their classification.
Encapsulation and inheritance, rules of inheritance. Class as
an abstract type data.
Self study: item 6, N44

45. Computer lesson Task: create program with elements of OOP
Self study: item 6, N45

46. Practical lesson Generation and destruction of dynamic software objects.
Self study: item 6, N46

47. Exam Self study: item 6, N47

6. Self-study

The discipline «Fundamentals of Programming. Part 1. Basic structures» is based on independent
preparations for classroom on theoretical and practical topics.

1. Preparation for the lecture 19 1 1,p.73-81

2. Preparing for a computer lesson 19 1.5 Create a program

3. Preparation for the lecture 20 1 2,p.151-152

4. Preparing for a computer lesson 20 1.5 Create a program

5. Preparing for a practical lesson 10 1.5 2,p.167-173

6. Preparation for the lecture 21 1 1,p.114-116

7. Preparing for a computer lesson 21 1.5 Create a program

8. Preparation for the lecture 22 1 1,p.131-133

9. Preparing for a computer lesson 22 1.5 Create a program

10. Preparing for a practical lesson 11 1.5 1,p.192-194

11. Preparation for the lecture 23 1 1,175-177

12. Preparing for a computer lesson 23 1.5 Create a program

13. Preparation for the lecture 24 1 2,p.254-270

14. Preparing for a computer lesson 24 1.5 Create a program

15. Preparing for a practical lesson 12 1.5 2,p.456-457

16. Preparation for the lecture 25 1 2,p.275-285

17. Preparing for a computer lesson 25 1.5 Create a program

18. Preparation for the lecture 26 1 1,p.160-164,2,p.454-477

19. Preparing for a computer lesson 26 1.5 Create a program

20. Preparing for a practical lesson 13 1.5 2,p.309-311

21. Preparing for test 4 Lection 19-26

22. Preparation for the lecture 27 1 2,p.478-494

23. Preparing for a computer lesson 27 1.5 Create a program

24. Preparation for the lecture 28 1 2,p.310-316

25. Preparing for a computer lesson 28 1.5 Create a program

26. Preparing for a practical lesson 14 1.5 2,p.421-425

27. Preparation for the lecture 29 1 2,p.322-355

28. Preparing for a computer lesson 29 1.5 Create a program

29. Preparation for the lecture 30 1 2,p.417-419

30. Preparing for a computer lesson 30 1.5 Create a program

31. Preparing for a practical lesson 15 1.5 2,p.430-432

32. Preparation for the lecture 31 1 2,p.420-429

33. Preparing for a computer lesson 31 1.5 Create a program

34. Preparation for the lecture 32 1 2,p.420-436

35. Preparing for a computer lesson 32 1.5 Create a program

36. Preparing for a practical lesson 16 1.5 1,p.148-152

37. Preparation for the lecture 33 1 1,p.142-144

38. Preparing for a computer lesson 33 1.5 Create a program

39. Preparation for the lecture 34 1 1-22,p. 437-453

40. Preparing for a computer lesson 34 1.5 Create a program

41. Preparing for a practical lesson 17 1.5 1,p.153-154

42. Preparation for the lecture 35 1 1,p.192-194

43. Preparing for a computer lesson 35 1.5 Create a program

44. Preparation for the lecture 36 1 2,p. 528-600

45. Preparing for a computer lesson 36 1.5 Create a program

46. Preparing for a practical lesson 18 1.5 2,p.454-494

47. Preparing for exam 6 Lection 1-18

 Policy and Assessment

7. Course policy

• Attendance at lectures is mandatory.
• Attendance at computer lesson can be sporadic and if necessary to protect the work of the
computer lesson.

• Rules of conduct in the classroom: activity, respect for those present, turning off the phones.
• Adherence to the policy of academic integrity.
• Rules for the protection of computer work: work must be done according to the option of the
student, which is determined by his number in the list of the group

8. Monitoring and grading policy

During the semester, students complete 5 computer works. Maximum number of points for each
computer workshop: 8 points.

Points are awarded for:
- quality of laboratory work (computer work): 0-3 points;
- answer during the defense of laboratory work (computer workshop): 0-4 points;
- timely submission of work to the defense: 0-1 points.
-
Performance evaluation criteria:
3 points - the work is done qualitatively, in full;
2 points - the work is done qualitatively, in full, but has shortcomings;
1 point - the work is done in full, but contains minor errors;
0 points - the work is not performed in full, or contains significant errors.

Response evaluation criteria:
4 points - the answer is complete, well-argued;
3-2 points - in general the answer is correct, but has shortcomings or minor errors;
1 point - there are significant errors in the answer;
0 points - no answer or the answer is incorrect.

Criteria for assessing the timeliness of submission of work to the defense:
1 points - the work is submitted for defense no later than the specified period;
0 points - the work is submitted for defense later than the specified deadline.

Maximum number of points for performing and defending computer workshops:
R1=8 points × 5 lab. works = 40 points

The test consists of 1 practical task. The answer is evaluated by 8 points.
R2=10
10-9 points - the answer is correct, complete, well-argued;

7-8- points - the answer is correct, detailed, but not very well reasoned;
5-6 points - in general the answer is correct, but has shortcomings;
3-4 points - there are minor errors in the answer;
1-2 points - there are significant errors in the answer;
0 points - no answer or the answer is incorrect.

The task for the exam consists of 2 questions - 1 theoretical and 2 practical. The answer to

theoretical question is evaluated by 10 points, and the answer to the practical question is evaluated by 20
points.

Criteria for evaluating each theoretical question of the test:
9-10 points - the answer is correct, complete, well-argued;
7-8 points - the answer is correct, detailed, but not very well reasoned;
5-6 points - in general the answer is correct, but has shortcomings;
3-4 points - there are minor errors in the answer;
1-2 points - there are significant errors in the answer;
0 points - no answer or the answer is incorrect.

Criteria for evaluating the practical question of the test:
18-20 points - the answer is correct, the calculations are performed in full;
14-17 points - the answer is correct, but not very well supported by calculations;
9-13 points - in general the answer is correct, but has shortcomings;
5-8 points - there are minor errors in the answer;
1-4 points - there are significant errors in the answer;
0 points - no answer or the answer is incorrect.

Maximum number of points for exam:
R3=10 points × 1 theoretical question + 20 points × 2 practical questions = 50 points.
The rating scale for the discipline is equal to:

Rs = R1 + R2 + R3 = 40 point + 10 point + 50point = 100 points.
Calendar control: conducted twice a semester as a monitoring of the current state of compliance with the
requirements of the syllabus.

At the first attestation (8th week) the student receives "credited" if his current rating is not less than 15
points (50% of the maximum number of points that a student can receive before the first attestation).
At the second attestation (14th week) the student receives "credited" if his current rating is not less than
25 points (50% of the maximum number of points that a student can receive before the second attestation).

Semester control: exam
Conditions of admission to semester control: with a semester rating at least 30 points and enrollment in all
computer works.

The final performance score or the results of the Fail/ Pass Exam are adopted by university grading
system as follows:

Score Grade
100-95 Excellent
94-85 Very good
84-75 Good

74-65 Satisfactory
64-60 Sufficient

Below 60 Fail
Course requirements are not met Not Graded

9. Additional information about the course

It is possible to enroll in certificates of distance or online courses on the relevant topic - programming in
C.

Syllabus of the course

Is designed by teacher PhD, Associate Professor, Yuliia Boiarinova
Adopted by Computer Systems Software Department (protocol № 12 from 26.04.23)

Approved by the Faculty Board of Methodology (protocol № 10 from 26.05.23)

