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PREFACE 

 

The rapid development of modern computer systems and technologies has 

significantly expanded the boundaries of the successful application of mathemati-

cal methods during the study of theoretical and applied problems. The correct 

formulation of any engineering and technical problem, the construction of its ma-

thematical model, followed by the development of an algorithm and a software 

product requires an IT specialist to have in-depth knowledge of fundamental 

disciplines. The course of mathematical analysis is the basis of the general 

mathematical training of an IT specialist or engineer at a technical university. 

According to the requirements of the standard of higher education in the spe-

cialty 121 “Software engineering”, the study of the discipline “Mathematical 

analysis” contributes to the formation of the following general and professional 

competences in students of higher education: 

– ability to abstract thinking, analysis and synthesis; 

– ability to apply knowledge in practical situations; 

– the ability to learn and master modern knowledge; 

– ability to algorithmic and logical thinking; 

– the ability to apply the acquired fundamental mathematical knowledge for 

the development of calculation methods in the creation of multimedia and infor-

mation-search systems. 

The acquired knowledge provides the following program learning outcomes: 

– know and apply relevant mathematical concepts, methods of domain, 

system and object-oriented analysis and mathematical modeling for software 

development; 

– select initial data for design, guided by formal requirements description 

and modeling methods; 

– know and be able to use fundamental mathematical tools when 

constructing algorithms and developing modern software. 

An important place for the successful mastering of sections of mathematical 

analysis is given to practical classes. Active and systematic work on them under the 

guidance of a teacher contributes to the qualitative assimilation of theoretical material, 

gives students practical skills for independent work and scientific research. 

There are now a number of good collections of mathematical analysis prob-

lems. However, their content often does not agree with the curricula of some IT 

specialties, and due to the large amount of material of such problem books, it is 

difficult for first-year students to find their way around them. In addition, most 

problem books do not contribute to students’ independent work, as they do not 

contain solutions to typical problems. 
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The offered practicum in mathematical analysis is intended for the organiza-

tion of high-quality classroom and independent work of students during the study 

of the discipline “Mathematical Analysis”. The workshop presents sections of ma-

thematical analysis, which are taught in the first semester to students of specialty 

121 “Software engineering” of the Faculty of Applied Mathematics of the Nation-

al University of Ukraine “Ihor Sikorskyi Kyiv Polytechnic Institute”. 

The content of the workshop corresponds to the program of the educational 

discipline (Syllabus) and covers the following sections: “Introduction to mathe-

matical analysis”, “Differential calculus of functions of one variable” and 

“Integral calculus of functions of one variable”. 

18 topics of practical classes are distinguished in the workshop. At the be-

ginning of each topic, theoretical material is briefly presented, which contains 

definitions of basic concepts, formulation of theorems and formulas necessary for 

solving problems. The theoretical material of the topic is illustrated with detailed 

examples and methodical recommendations for their implementation. Each topic 

has a sufficient number of examples and problems for conducting classroom 

classes and independent work of students. At the end of the topics, the answers to 

the tasks or instructions for their implementation are given. 

When working with the manual, the student must first of all study the theo-

retical material related to the relevant topic, analyze in detail the given solutions 

to the examples, and then complete the tasks proposed for the topic. The theoreti-

cal material is presented in its entirety in the basic textbook [1]. 

The educational material presented in the workshop was successfully used in 

practical classes by students of higher education during the distance learning 

process at the Department of Computer Systems Software, Faculty of Applied 

Mathematics of Igor Sikorsky Kyiv Polytechnic Institute. 

The workshop is prepared for students of higher education in the specialty 

121 “Software engineering” who seek to master the course of mathematical 

analysis with high quality, who wish to form the necessary skills and abilities 

from the application of acquired theoretical knowledge, as well as for teachers 

who work with them in order to improve their pedagogical skills. 

This practicum will be useful for students of other technical majors studying 

higher mathematics. 

The authors 
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Section I. INTRODUCTION TO MATHEMATICAL ANALYSIS 

Topic I. Induction, sets and functions 

 

PRACTICAL LESSON  1 

Method of mathematical induction 

 

In mathematics, there are often statements that depend on a natural number. 

To prove such statements, the method of mathematical induction is used, which is 

based on such a theorem. 

Theorem (Principle of mathematical induction). Let it be necessary to 

prove some statement (hypothesis) ( )Р n , where n  . If the conditions are met: 

1) the statement is valid according to 1n   (the basis of induction); 

2) if for any k   is true ( )Р k  – the statement for 1n k   (inductive 

transition) is true, then the statement ( )Р n  is valid for any value n  . 

Remark. Sometimes it is necessary to prove the truth of the statement ( )Р n  

for whole values n , starting from some number 
0

n  . In this case, the basis of 

induction will be the verification of the truth of the statement ( )Р n by 
0

n n . 

Let’s consider examples that illustrate the method of mathematical 

induction. In some of them, we will use Newton’s binomial formula: 

0

( )

n

n k k n k

n

k

a b C a b




   . 

Example 1.1. Prove that the expression 2 2 1
7 8

n n 
  is divisible by 57 for 

any 0n  . 

The solution. Currently, we have the statement ( )Р n : “ 2 2 1
7 8

n n 
  is 

divisible by 57” for 0n  . 

Induction base. We make sure that 0n  the following statement (0)Р  is 

true because 0 2 0 1
7 8 49 8 57

 
    it is divisible by 57. 

Inductive transition. We assume that ( )Р k  it is true for an arbitrary non-

negative integer k, i.e. the expression 2 2 1
7 8

k k 
  is divisible by 57. Let us now 

prove that under the condition of the hypothesis ( )Р k  being fulfilled, the 

statement ( 1)Р k   will also be true, i.e. ( 1) 2 2 ( 1) 1
7 8

k k   
  it is divisible by 57. 

We have: 

( 1) 2 2 ( 1) 1 3 2 3 2 2 2 1

2 2 1 2 2 1 2 1

7 8 7 8 7 7 8 8

7 7 64 8 7(7 8 ) 57 8 .

       

    

       

       

k k k k k k

k k k k k
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Therefore, both conditions of the theorem are fulfilled, the statement ( )Р n  

is valid for any value of 0n  . 

Example 1.2. Set the expression for the sum 
n

S  if 

1 1 1

1 2 2 3 ( 1)
n

S
n n

   
   

. 

The solution. Let’s consider and test the hypothesis that for an arbitrary 

natural number n  the sought sum is 
1

n

n
S

n



. 

Induction base. For 1n   we have the sum 
1

1 1

1 2 2
S  


– the correct 

equality.  

Inductive transition. Suppose that the written formula is true for n k , i.e. 

1
k

k
S

k



. Based on this formula, it is necessary to prove that 

1

1

2
k

k
S

k






. Let’s 

check the second condition of the theorem: 

1

2

1 1 ( 2) 1

( 1)( 2) 1 ( 1)( 2) ( 1)( 2)

( 1) 1
.

( 1)( 2) 2



 
     

      

 
 

  

k k

k k k
S S

k k k k k k k

k k

k k k

 

Thus, it is proved that the sought sum 
n

S  is calculated by the formula 

1
n

n
S

n



 for an arbitrary natural number n . 

Consider how the formula for the original hypothesis in this problem is 

derived. 

Example 1.3. Using the method of mathematical induction, prove the 

formula: 

3 3 3 3 2
1 2 3 (1 2 3 )n n         .   (1.1) 

The solution. In this problem, it is necessary to check the hypothesis ( )Р n , 

which is that equality (1.1) holds. 

Induction base. For 1n   formula (1.1) is valid: 
3 2

1 1 . 

Inductive transition. Now suppose that the written formula is true for 

n k , i.e.^ 

3 3 3 3 2
1 2 3 (1 2 3 )k k         . 
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It is necessary to prove the statement of the second condition of the 

theorem, i.e. to show that the formula is valid according to 1n k  : 

3 3 3 3 3 2
1 2 3 ( 1) [(1 2 3 ) ( 1)]k k k k             .       (1.2) 

Using the assumption, we write the left part of the expression (1.2) as follows: 

2 3
(1 2 3 ) ( 1)     k k . 

The right-hand side of expression (1.2) is transformed by the formula of the 

square of the sum of two terms 1 2 3a k      and 1b k  : 

2 2

2 2 2

[(1 2 3 ) ( 1)] (1 2 3 ) 2(1 2 3 )( 1)

(1 )
( 1) (1 2 3 ) 2 ( 1) ( 1)

2

                 


           

k k k k k

k
k k k k k

2 2 2 2 3
(1 2 3 ) ( 1) ( 1) (1 2 3 ) ( 1) .k k k k k k                 

We see that the left and right parts of expression (1.2) are the same. So, by 

the method of mathematical induction, we proved that formula (1.1) is valid for 

any n  . 

What formula was used in the transformation process? 

Example 1.4. Prove the inequality 

1 1 1
1

2 3
n

n
           (1.3) 

by the method of mathematical induction for 1n  . 

The solution. Let’s check the first condition of the theorem (base of 

induction) according to 2n  : 

1
1 2

2
  . 

This inequality holds because 2 1 2  . 

Inductive transition. Assume that the given inequality (1.3) is valid 

according to n k : 

     
1 1 1

1
2 3

k
k

     . 

Now we need to prove that relation (1.3) is also valid for 1n k  , i.e.: 

1 1 1 1
1 1

2 3 1
k

k k
      


.      (1.4) 
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To prove the formula (1.4), using the assumption, we replace the first k

terms in its left part with a smaller value k ; we get the inequality 

1
1

1
k k

k
  


. 

It is obvious that such a replacement reduced the left side of inequality 

(1.4). If after that the obtained inequality is valid, then the inequality (1.4) will 

also be fulfilled (because its left part is greater than k ). Let’s check whether the 

last inequality holds: 

1
1 ( 1) 1 1 ( 1) 1

1
k k k k k k k k k k

k
             


. 

After identical transformations, an obvious inequality is obtained, which is valid 

for arbitrary natural numbers ( 1k  ), therefore, inequality (1.4) is also satisfied, 

and together with it, the given inequality (1.3). 

Example 1.5. Prove the inequality by the method of mathematical 

induction 

1 3 5 2 1 1

2 4 6 2 2 1

n

n n


    


   (1.5) 

for 1n  . 

The solution. Let’s check the first condition of the theorem (base of 

induction) by 1n  . It is obvious that the obtained inequality 
1 1

2 3
  holds. 

Let us now check the second condition of the theorem (inductive 

transition). Assume that inequality (1.5) is satisfied by n k : 

1 3 5 2 1 1

2 4 6 2 2 1


    



k

k k
; 

and we will prove its validity by 1n k  , i.e.: 

1 3 5 2 1 2 1 1

2 4 6 2 2( 1) 2 3

k k

k k k

 
     

 
.          (1.6) 

Let’s replace the first k  factors in the left part of the expression (1.6) with 

the right part of the assumption; as a result, we get the following inequality: 

1 2 1 1

2( 1)2 1 2 3

k

kk k


 

 
. 
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Thus, if this inequality is valid, then inequality (1.6) will also hold. Let’s 

check the validity of the obtained inequality: 

2 2

2 1 1
2( 1) (2 3)(2 1)

2( 1) 2 3

4 8 4 4 8 3 4 3.


      

 

       

k
k k k

k k

k k k k

 

After identical transformations, an obvious inequality is obtained, which is 

valid for arbitrary natural numbers ( 1n  ). Therefore, the inequality (1.6) is also 

fulfilled, and together with it, the given inequality (1.5). 

Example 1.6. Using the method of mathematical induction, prove the 

trigonometric identity: 

2 1
sin

1 2
cos cos 2 cos 3 cos

2
2 sin

2

n
x

x x x nx
x

 
 

 
     

 
 
 

.     (1.7) 

The solution. In this problem, the hypothesis has already been proposed, 

and it remains only to be tested. 

Induction base. Let’s check the first condition of the theorem by 1n  . That 

is, it is necessary to show that the following equality is fair: 

3
sin

1 2
cos

2
2 sin

2

 
 
 

 
 
 
 

x

x
x

. 

Let’s transform the right-hand side of this equality: 

 

2

2 2 2

3
sin sin sin( ) cos cos( ) sin 2 sin cos

2 2 2 2 2 2

2 sin 2 sin 2 sin 2 sin
2 2 2 2

1 1 1
cos( ) cos cos( ) cos 1 2 sin

2 2 2 2 2 2

x x x x x x
x x x

x x x x

x x x
x x

           
              

           
   

       
       
       

     
         

     

1
cos .

2
x

 
  

   

As we can see, equality (1.7) is true for 1n  . 

Now let’s check the second condition of the theorem (inductive transition). 

Assume that the given identity is fulfilled by n k : 



16 

 

2 1
sin

1 2
cos cos 2 cos 3 cos

2
2 sin

2

 
 

 
     

 
 
 

k
x

x x x kx
x

. 

We will prove its validity by 1n k  : 

2 3
sin

1 2
cos cos 2 cos 3 cos cos( 1)

2
2 sin

2

k
x

x x x kx k x
x

 
 

 
       

 
 
 

.  (1.8) 

Using the assumption on the left side of equality (1.8), we obtain the 

following trigonometric identity: 

2 1 2 3
sin sin

2 2
cos( 1)

2 sin 2 sin
2 2

k k
x x

k x
x x

    
    

   
  

   
   
    . 

After identical transformations, this expression will take the following 

form: 

2 3 2 1
2 sin cos[( 1) ] sin sin

2 2 2

x k k
k x x x

      
         

      . 

In the left part, we will use the well-known formula 

2 sin cos sin( ) sin( )          , 

we will get: 

 

2 sin cos[( 1) ] sin ( 1) sin ( 1)
2 2 2

x x x
k x k x k x

     
            

       

 
(3 2 ) (2 1)

sin sin
2 2

    
 

   
   

k x k x
. 

It can be seen that equality (1.8) is correct. Thus, the trigonometric identity 

(1.7) is proved for all natural n . 

Example 1.7. Prove the inequality by the method of mathematical induction 

1
2 ( ) ( )

n n n n
a b a b


              (1.9) 

for 2, 0,n a b a b    . 
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The solution. Let’s check the first statement of the theorem by 2n  . 

That is, it is necessary to show that the following inequality is fair: 
2 2 2

2( ) ( )a b a b   . After identical transformations, we obtain the inequality 

2
( ) 0a b  , which always holds, except in the case of a b . 

Now let’s check the second statement. Suppose that the given inequality is 

fulfilled by n k , i.e.: 

  
1

2 ( ) ( )
k k k k

a b a b


   .        (1.10) 

Therefore, using inequality (1.10), it is necessary to prove the validity of 

inequality (1.9) for 1n k  . Let’s write down the inequality that needs to be 

proved: 

1 1 1
2 ( ) ( )

k k k k
a b a b

  
   .          (1.11) 

Multiply both parts of expression (1.10) by 0a b  , as a result we get: 

1 1
2 ( )( ) ( )

k k k k
a b a b a b

 
    .              (1.12) 

Let’s prove that 

1 1 1
2 ( ) 2 ( )( )

  
   

k k k k k k
a b a b a b .                           (1.13) 

Let’s reduce by a factor 
1

2
k 

 and open the parentheses: 

1 1 1 1 1 1
2 2

k k k k k k k k k k
a b a b ba ab a b ba ab

     
           

( )( ) 0   
k k

a b a b .      (1.14) 

We will show that the inequality (1.14) is correct under the restrictions 

stated in the condition of the problem. 

A. If a b , then 
k k

a b , therefore, on the left in inequality (1.14) we have the 

product of two positive numbers. Therefore, inequality (1.14) is true in this case. 

B. If a b , then 
k k

a b , therefore, on the left in inequality (1.14) we have 

the product of two negative numbers. Therefore, inequality (1.14) also holds true 

in this case. 

Since the inequality (1.14) is correct, and together with it the inequality 

(1.11), we thereby completed the proof of the given inequality (1.9). 

Example 1.8. Prove the following inequality using the method of 

mathematical induction: 

!
2

 
  

 

n

n
n e , 1n  .                                           (1.15) 
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The solution. Let’s check the basis of induction by 1n  . We have: 1
2

e
 

this inequality holds. Now let’s check the second statement of the 

theorem. Suppose that the given inequality is fulfilled by n k , i.e.: 

       !
2

k

k
k e

 
  

 
.              (1.16) 

Now, using inequality (1.16), it is necessary to prove the validity of 

inequality (1.15) for 1n k  . Let’s write down the inequality that needs to be 

proved: 

1

1
( 1)!

2



 
   

 

k

k
k e .                            (1.17) 

We multiply both parts of the expression (1.16) by ( 1)k  , as a result we 

get: 

( 1)! ( 1)
2

 
   

 

k

k
k e k .      (1.18) 

Let’s replace the left part in inequality (1.17) with the right part from (1.18), 

which is greater than ( 1)!k  . It is obvious that if the new inequality is correct, 

then inequality (1.17) will also be correct. Let’s write down this new inequality 

and check if it holds: 

1

1 1 1
( 1) 2 2 1

2 2



        
             

       

k k k k

k k k
e k e

k k
.         (1.19) 

To prove inequality (1.19), we will open its right-hand side using Newton’s 

binomial formula and keep the first three terms of this expansion: 

1 2

1 1 2 2

2

1 1 1 ! 1
1 1 1 1 2 2

2!( 2)! 2

k

k k k

k k

k k
C C

k k k k k k

       
                   

      . 

Since all terms of this expansion are positive, it is obvious that the right-

hand side of the inequality (1.19) is greater than 2. Thus, we have shown that the 

inequality (1.17) is true, and therefore, by the method of mathematical induction, 

the original inequality (1.15) is correct. 
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Tasks for classroom and independent work 

I. Using the method of mathematical induction, prove the identities. 

1.1. 
2 2 2

1 2 ( 1)

1 3 3 5 (2 1) (2 1) 2 (2 1)

n n n

n n n


   

      
. 

1.2. 2 2 2 2 ( 1)(2 1)
1 2 3

6

n n n
n

 
     . 

1.3. 
( 1)( 2)( 3)

1 2 3 2 3 4 3 4 5 ( 1)( 2)
4

n n n n
n n n

  
             . 

1.4. 

( 1)
sin sin

2 2
sin sin 2 sin 3 sin

sin
2

n x nx

x x x nx
x

   
   

   
    

 
 
 

. 

1.5. 
2

( 1) sin sin[( 1) ]
sin 2 sin 2 3 sin 3 sin

4 sin
2

n nx n n x
x x x n nx

x

  
    

 
 
 

. 

1.6. 
2

( 1) cos cos[( 1) ] 1
cos 2 cos 2 3 cos 3 cos

4 sin
2

n nx n n x
x x x n nx

x

   
    

 
 
 

. 

1.7. 
2 2

1 1 1 1
tg tg tg ctg ctg( )

2 2 2 2 2 2 2 2
n n n n

x x x x
x

       
           

       
; .x m  

II. Using the method of mathematical induction, prove inequalities. 

1.8. 2
2

n
n ,  1n  . 

1.9. 5 7 2 6
n n n
   ,  2n  . 

1.10. 
1

( 1)
n n

n n

  ,  3n  . 

1.11. 
1

!
2

n

n
n

 
  
 

,  1n  . 

1.12. !

n

n
n

e

 
  
 

,  1n  . 

1.13. (1 ) 1
n

n    ,  1, 0, 2n     . 

1.14. 
1

1

n

e
n

 
  

 
,  1n  . 

1.15. 

1

1
1

n

e
n



 
  

 
,  1n  . 
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III. Using the method of mathematical induction, prove that the expression. 

1.16. 5 3
5 4n n n   is divisible by 120 for any 0n  . 

1.17. 1 2 1
4 5

n n 
  is divisible by 21 for any n  . 

1.18. 
1 2 1

11 12
n n 

  is divisible by 133 for any n  . 

1.19. Using the method of mathematical induction, prove Newton’s 

binomial formula. 
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PRACTICAL LESSON  2 

Sets. Actions on sets. Mapping of sets. 

Images and preimage. Three types of reflections 

 

2.1. Sets. Actions on sets 
 

A set is a specific collection of objects of any nature that have some 

common feature. Objects that form a set are called its elements. 

Sets are denoted by uppercase Latin letters: A, B, C, ..., and elements of 

sets  – lowercase: a, b, c, ... (without indices or with indices). The fact that the 

object a is an element of the set M is written as follows: aM (read: “a belongs 

to the set M”, “a is an element of the set M”, “the set M contains an element a”, 

“a is part of the set M”). The symbol “” is a sign of belonging to a set element. 

In order to emphasize that some element a does not belong to the set M, the 

notation a  M or a M  is used. 

A set can be defined by a list of its elements, for example, 

{ , , , ..., , }М a b c x y  or 1 2
{ , , ..., }

n
А a a a . In the general case, a set is given by 

means of a characteristic property (condition) ( )P x , which is satisfied by all the 

elements of this set and only by them. In this case, record: { : ( )}М x P x . This 

expression reads as follows: “the set M is the set of all such elements x for which 

the property P is fulfilled”, where ( )P x  denotes the property possessed by the 

elements of the set M and only by them. Sometimes a vertical dash is used instead 

of a colon. 

For some sets in mathematics, generally accepted notations are used: N – set 

of natural numbers; Z is a set of integers; Q is a set of rational numbers; R is a set 

of real numbers; C is a set of complex numbers; ];[ ba  – numerical interval 

(segment); );( ba  – numeric interval. 

Definition. The set A is called a subset of the set B (denoted by A B  

or B A ) if every element of the set A belongs to the set B: 

 ( )     A B x x A x B . 

The signs   and   are called inclusion or non-strict inclusion signs. 

Definition. Sets A and B are called equal if they consist of the same 

elements, that is, each element of the set A is an element of the set B and vice 

versa; denote BA  : 

( )       A B x A x B i x B x A . 
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Thus, to prove the equality of sets, it is necessary to establish two inclusion 

of A B  and B A . 

Example 2.1. Show that the sets { : cos 1}A x x    and B  

{ : 2 , }     x x n n  are coincide. 

The solution. If x A , then x  is a solution of the equation cos 1x   . This 

means that x  can be represented as 2 ,      x n n , and therefore x B . Thus, 

we have inclusion A B . 

If x B , that is 2   x n , which is equivalent to cos 1x   , that is B A . 

Therefore, according to the definition, we have the equality A B . 

If A B , but A B , then we write A B  and the set A is called a proper 

(or strict) subset of the set B. The symbol   (or  ), unlike the sign   (or  ), is 

called the sign of strict inclusion. 

A set that includes all the considered sets is called a universal set and is 

denoted by U. For example, in mathematical analysis, a universal set can be 

considered a set of all real numbers or the set of all points of n-dimensional space. 

Consider operations on sets. These operations make it possible to construct 

new sets from given sets. 

Definition. The union or sum of the sets A and B (denoted by A B ) is 

called the set of those elements that belong to at least one of the sets A or B: 

 |      A B x x A or x B . 

Definition. The intersection or product of sets A and B (denoted by A B ) 

is a set consisting of those and only those elements that belong to sets A and B at 

the same time: 

 |      A B x x A and x B . 

Definition. The difference of the sets A and B (denoted by \A B  ) is the set 

of all those and only those elements of the set A that do not belong to the set B: 

  \ |    A B x x A and B
. 

Definition. The set 

( \ ) ( \ )A B A B B A  
 

is called the symmetric difference of sets A and B. 

Definition. The complement of the set A (denoted by A ) is called the set of 

all elements of the universal set that do not belong to the set A: 

\ { |   }   A U A x x U and x A . 
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Example 2.2. Given sets { : 4,  }  U x x x , { 2, 1, 2, 4}  A , 

4 3 2
{ : 7 13 6 0}B x x x x x      . Find sets: A B , A B , \A B , \B A , B , 

( )A B B  . 

The solution. Let’s write the sets U and B as a list of elements. Let’s find 

the set of roots of the equation 
4 3 2

7 13 6 0x x x x     . By selection, we make 

sure that 1x   is the root of the equation. As a result of dividing this polynomial 

by 1x   we get the polynomial 
3

7 6x x  . Let’s break it down into multiples: 

3 2 2
7 6 ( 1) 6( 1) ( 1)( 6) ( 1)( 2)( 3)             x x x x x x x x x x x . 

So, we have the roots 1,2 3 4
1,  2,  3x x x     of the given polynomial, 

and therefore the set { 3,1, 2}B   . We have a universal set 

{ 4, 3, 2, 1, 0,1, 2, 3, 4}U      . 

We perform operations on sets: 

{ 2, 1, 2, 4} { 3,1 { 3, 2, 1,1, 2,, 42 }}A B        ; 

{ 2, 1, 2, 4} { 3,1, 2 {2}}A B       ; 

{ 2, 1, 2, 4} \ { 3,1, 2\ { 2, 1, }} 4A B      ; 

{ 3,1, 2} \ { 2, 1, 2, 4}\ { 3,1}B A      ; 

{ 4, 3, 2, 1, 0,1, 2,3, 4} \ { 3,1, 2 { 4, 2, 1, 0,3,} 4};B           

( ) { 3, 2, 1,1, 4} { 4, 2, 1, 0,3, 4} { 2, 1, 4}A B B             . 

 

2.2. Representation of sets. Images and preimage 

 

Often, when solving problems, you have to deal with elements sets con-

nected by some relationship. Let two sets X  and Y . 

Definition. If each element x X  according to a known rule (law) f  is 

matched with a certain element y Y , which is denoted by the symbol ( )y f x , 

then this correspondence (rule or operator) is called a function (mapping) acting 

from set X  to set Y  (Fig. 2.1). 

 

 

 

 

 

 

 

Fig. 2.1. The Function f Maps X  to Y  

  
X

  
Y

  x   y  
    

f
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This correspondence is indicated by the following symbols: :f X Y . At 

the same time, the set X  is called the domain of definition (
f

D ) of the function 

( )y f x . 

Definition. If f  is a function from X  to Y , we say that X  is the domain 

of f  and Y  is the codomain of f . If ( )f x y , we say that y  is the image of x  

and x  is a preimage of y . 

Definition. Let :f X Y  be a mapping from X  to Y . The set 
f

Е  of all 

elements of the form ( )f x Y  is called a image of the mapping f , i.e.: 

 ( ) | ( )  
f

E f x x X f X . 

It is obvious that in the general case ( )f X Y . 

Definition. The image of an element (or the value of the mapping at the 

point x X ) when mapping is :f X Y  called an element y Y  such that 

( )y f x . 

Definition. The image of a subset A X  under mapping :f X Y  is 

called a subset B Y  such that  ( ) | ( )B f x x A f A   . 

 

2.3. Three types of reflections: surjection, injection, 

and bijection 

 

There are three types of reflections: surjection, injection and bijection. 

Definition of surjection. A mapping :f X Y  is called surjective (or 

surrection, or set-to-set mapping) if each element y  of the set Y  is the image of 

at least one element x  of the set ,X  i.e. 

: ( )y Y x X y f x      (Fig. 2.2). 

Definition of injection. The mapping 

:f X Y  of a set X  into a set Y is called 

injective (or an injunction, or one-to-one) if 

different elements x  of the set X  go into different 

elements y  of the set Y , i.e. 

! : ( )x X y Y y f x     . At the same time, there 

may be elements y  in the set Y  that do not have 

corresponding elements x X  that “generate” 

them (Fig. 2.3). 
Fig. 2.2. A surjective function 
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In other words, an injection is a relation 

between elements of two sets X  and Y , which 

matches one element x  from the first set X  with 

one and only one element y  from the second set Y . 

Definition of bijection. The mapping 

:f X Y  is called bijective if it is both injective 

and surjective. 

In other words, this is a “one-to-one” 

mapping, and not a single element of the set X  and 

the set Y  was left “without an arrow” (Fig. 2.4). 

Definition. The set of all elements of the form 
1
( )f y X


  is called the preimage of an element 

y Y , where  
1
( ) | ( )f y x X f x y


   . 

Definition. The preimage of a subset 

B Y  is called a set of the form 

 
1
( ) | ( )f B x X f x B


   . 

Definition. If there is a bijection of the set A 

on the set B, then the sets A and B are called equi-

potent. Equipotent sets are often called equivalent. 

Definition. The sets that are equivalent to the set N of natural numbers are 

called countable, and the sets that are equivalent to the set R real numbers are 

called continuous. 

Let’s consider these concepts using examples. 

Example 2.3. Given mapping :f R R


 , where 
2

( )f x x  and segment 

[ 4,1]x   . It is necessary to find: 

a) the image of this segment ([ 4,1])Z f   and 

b) the preimage of the found image 
1
( )f Z


. 

The solution. Note that the range of values of this mapping is the set of 

non-negative real numbers. In addition, the given mapping is surjective: 

a) we find the image of this mapping: ([ 4,1]) [0,16]f   ; 

b) the preimage of the set [0,16]  is the line segment 1
[0,16] [ 4, 4]f


  . As 

we can see the preimage does not coincide with the given segment. 

Example 2.4. Given a mapping :f R R


 , where ( )f x x  and two 

segments: [ 3, 2]  and [ 2, 5] . It is necessary to find images of these segments and 

preimages of these images. 

Fig. 2.3. A One-to-One Function 

Fig. 2.4. The bijective function 
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The solution. The domain of this mapping is the set of nonnegative real 

numbers. The given mapping is also surjective. Let’s find the image and its 

preimage for each of the segments: 

a) ([ 3, 2]) [0, 3]f   , 1
[0, 3] [ 3, 3]f


  ; 

b) ([ 2, 5]) [0, 5]f   , 1
[0, 3] [ 5, 5]f


  . 

It can be seen that the preimages also do not coincide with the given 

segments. 

Example 2.5. Given a mapping : \ {0}f R R , where ( ) lnf x x  and two 

segments: [1, ]e  and 
2

[ , ]e e  . It is necessary to find images of these segments 

and pre preimages of these images. 

The solution. The given mapping is also surjective. Let’s find the image 

and its pre preimage for each of the two segments: 

a) ([1, ]) [0,1]f e  , 1
[0,1] [ , 1] [1, ]f e e


    ; 

b) 
2

([ , ]) [1, 2]f e e   , 1 2 2
[1, 2] [ , ] [ , ]f e e e e


    . 

Example 2.6. Find the mapping of a segment [0,1]  into a segment [ , ]a b , 

where ,a b  are real numbers, a b , which is realized by a linear function. Give a 

geometric interpretation of such a mapping. 

The solution. Let [0,1]x  , and [ , ]y a b . 

Let’s construct a linear relationship between 

these variables: ( )y a b a x   . This is the 

desired mapping of a segment [0,1]  into a 

segment [ , ]a b . Now let’s find out how this 

mapping is arranged from a geometric point of 

view. Let’s plot the graph of the found 

dependence (Fig. 2.5). 

Obviously, this mapping is a bijection: to 

any number [0,1]x  corresponds to a single 

number. And vice versa, any number 

corresponds to a single number [0,1]x  . (Explain why?) 

Thus, we showed that the sets [0,1]  and [ , ]a b  are of equipotent. 

Example 2.7. The mapping :f R R  is given by the function siny x . 

Find the image Z  of the line segment 0,
4

 

 
 

 and the preimage  
1

f Z
  of this 

image. 

 

 
X

 S t

 

 
Y

 S t

 

 

a

 S t

 

 

O

 S t

 

 

b

 S t

 

 

( )y a b a x  

 S t

 
 

1

 S t

Fig. 2.5. А linear dependence 
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The solution. Let’s write down the image of this segment: 

2
0, 0,

4 2
f

    
    

    

. Now let’s find out what will be the prototype of such an 

image. To do this, you need to plot the graph of the function siny x , draw two 

horizontal lines 0y   and 
2

2
y  , project all the points of intersection of these 

lines with the graph of the function siny x  on the axis OX . The union of an 

infinite number of received segments will represent the sought-after preimage 

1 2
0,

2
f


  
   
  

. Draw two or three such segments on your own. What type of 

mapping is this? 

So, finally we have: 1 2 3
0, 2 ; 2 2 ; 2

2 4 4
f n n n n

       

                      

,  

0, 1, 2, 3,n     . 

Example 2.8. The mapping    : 1, 2, 3, 4 , , ,f a b c d  is given by the fol-

lowing expression: 

, 1 3;

, 2 4;
( )

, 2;

, 3 .

a if x or x

b if x or x
f x

c if x

d if x

 


 

 




   

It is necessary: 

a) to indicate the type of mapping; 

b) find the range of values mapping; 

c) find images of sets  1, 4 ,  2, 3 ,  1, 3, 4 ; 

d) find the preimages of the sets  
1

,f a b
 ,  

1
,f c d

 ,  
1

,f b d
 , 

 
1

, ,f b c d
 . 

The solution. 

a) Since each element of the set  , , ,Y a b c d  is the image of at least one 

element of the set  1, 2, 3, 4X  , then by definition we have a surrection. 

b) The range of mapping values coincides with the set  , , ,Y a b c d . 
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c) The image of the set  1, 4  consists of those elements of the set 

 , , ,Y a b c d  that correspond to each of the elements 1 and 4. This is a set 

consisting of two elements, that is:    1, 4 ,f a b . The image of the set  2, 3

consists of those elements of the set  , , ,Y a b c d  that correspond to each of the 

elements 2 and 3. This set consists of four elements, that is:    2, 3 , , ,f a b c d . 

For the latter, in this item of the task, we immediately write down the result of the 

reasoning:    1, 3, 4 , ,f a b d . 

d) The preimage of a set  ,a b  is the set of all those elements x of the set 

 1, 2, 3, 4X   for which the equality ( )f x a  or ( )f x b . So, we have: 

   
1

, 1, 2, 3, 4f a b


 . By similar considerations, we establish that 

   
1

, 2, 3f c d


 ;    
1

, 2, 3, 4f b d


 ;    
1

, , 2, 3, 4f b c d


 . 

Tasks for classroom and independent work 

2.1. Establish a one-to-one correspondence between the intervals [0,1)  and 

[0, ) , that is, it is necessary to prove that these two sets are equipotent. Give an 

algebraic and geometric interpretation of such a mapping. 

2.2. Establish a one-to-one correspondence between the intervals (0,1)  and 

( , )  , that is, it is necessary to prove that these two sets are equipotent. Give 

an algebraic and geometric interpretation of such a mapping. 

2.3. With the help of geometric images, establish a one-to-one 

correspondence between the set of points of the sphere and the plane, that is, it is 

necessary to prove that these two sets are equipotent. 

I. Find the union C A B   and intersection D A B   of the two 

sets. Draw the obtained sets. 

2.4.  ( , ) | , ,1 3; 2 2A x y x y R x y       ;   ( , ) | , , 3 2 6B x y x y R x y    . 

2.5.  2 2
( , ) | , , 4A x y x y R x y    ;   2 2

( , ) | , , 1B x y x y R x y    . 

2.6.  2 2
( , ) | , , 36A x y x y R x y    ;   ( , ) | , , 2 1B x y x y R x y    . 

2.7.  ( , ) | , , 3 8 0A x y x y R y x     ;   2
( , ) | , , 2B x y x y R y x   . 

2.8.  ( , ) | , ,1 5;A x y x y R x y x     ;  2 2
( , ) | , , 25B x y x y R x y    . 

II. Find the intersection D A B   of two spatial sets. Draw the obtained sets. 

2.9.  ( , , ) | , , , 0; 0; 0A x y z x y z R x y z     ; 

        ( , , ) | , , , 3B x y z x y z R x y z     . 
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2.10.  2 2
( , , ) | , , ,A x y z x y z R z x y    ; 

          2 2
( , , ) | , , , 8B x y z x y z R z x y     . 

2.11.  2 2
( , , ) | , , , 2 2A x y z x y z R z x y    ; 

          2 2
( , , ) | , , , 2B x y z x y z R z x y    . 

2.12.  2 2 2 2
( , , ) | , , ,A x y z x y z R x y z R     ; 

          2 2
( , , ) | , , ,B x y z x y z R z x y    . 

2.13. Will an empty set be a set A  whose elements are empty sets, i.e. 

 , , , ,A      ? 

2.14. What set will be the intersection 
1

i

i

P A





  of the counted family of 

sets (intervals) 
n

A  if 
1 1

; ,
2 1 2 1

n

n n
A n N

n n

  
  

  
? 

2.15. Find the intersection 
1 1

i i

i i

P A B

 

 

   
    
   

 of two intersections of 

infinite families of sets  n
A  and  n

B , respectively, if 
2 1 5 1

; ,
3 1 6 1

n

n n
A

n n

  
  

  

3 1 9 1
; ,

4 1 10 1
n

n n
B

n n

  
  

     

n N . 

2.16. Show that the set of natural numbers  1, 2, 3, , , 1,N n n   and the 

set of integers  0, 1, 1, 2, 2, , , ,Z M M        are equipotent (or equivalent). 

Construct the appropriate mapping in the form of a function, which connects the 

elements of these two sets. 

2.17. Define the power of a set. Describe the power of the counted set. How 

is it indicated? 

2.18. Describe the power of uncountable sets. What sets of the continuum 

type do you know? What are their properties? Are there sets whose capacity is 

greater than 
1

 ? 

2.19. Prove that the set of all rational numbers is countable. 

2.20. The mapping  : 0, 0,1
2

f
 


 
 

 is given by the function 
2

siny x . 

It is necessary to find out what kind of mapping this is – surjective, injective or 

bijective? Is there an inverse function for this function? 
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2.21. Let two sets be given:  1, 2, 3, , , 1,N n n   and  0,1B  . The 

following correspondence is established between the elements of these sets 

:f N B : 

0,  1 ( 1)
( )

1,  .

 

2

    ;

     

x

y
nif x is an even umber

if b
f x

x is an odd num er

 
   



 

It is necessary to find out what kind of mapping this is – surjective, injective or 

bijective? Is there an inverse function for this function? 

Answers and instructions 

2.1. For example, the function tg : [0,1) [0, )
2

y x
 

   
 

 (Fig. 2.6). 

0 0.2 0.4 0.6 0.8
0

10

20

30

y x( )

x
 

Fig. 2.6
 

2.2. For example, the function ln : (0,1) ( , )
1

x
y

x

 
    

 

 (Fig. 2.7). 

0.2 0.4 0.6 0.8
10

5

0

5

10

f x( )

x

 

Fig. 2.7 
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2.3. Instruction. Place the sphere S  so (Fig. 2.8) that it touches the OXY  

plane at the origin of coordinates O . Sphere S  is intersected by straight lines 

emanating from the same center – pole P . From this figure, it will be clear how 

the mutually unambiguous mapping of the sphere onto plane OXY  is arranged. 

Points  iN  mark the intersection of these straight lines with sphere S , and 

points  iM  – their intersection with plane OXY . Each point 
i

N  on the sphere S  

corresponds to its own point 
i

M  on the plane OXY , and vice versa. The only ex-

ception is the P  pole, which corresponds to infinitely distant points on the OXY  

plane. At this point, the mutually unambiguous mapping of the sphere onto the 

OXY  plane is broken. 

 

Fig. 2.8
 

2.13. No, not empty. 

2.14. {1 2}P  . 

2.15.   | 3 4;  5 6P x x  . 

2.16. 
, 2 1,  ( 0,1, 2, 3, );

( )
, 2 ,  (1, 2, 3, ).

k if x k k
f x

m if x m

   
 

 

 

2.20. A bijective. The inverse function exists: arcsinx y . 

2.21. A surjective, inverse function does not exist. 

 

 

 

 

X
 

Y
 

Z  

X
 

Y
 

P  
  

2
M

 

2
N  

1
M

 
1

N

 

3
M

 

3
N

 

O
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Topic II. The limit of a numerical sequence 

and the limit of a function 

 

PRACTICAL LESSON  3 

Numerical sequences and their limit. 

Justification of the convergence of numerical sequences. 

Recurrent numerical sequences. Stolz’s theorem 

 

3.1. Definition of a numerical sequence and its limit.  

The number e. Theorem about “two policemen” 

 

Definition 3.1. A numerical sequence is called a function :f N R , 

which matches each natural number n N  with some real number 
n

x R , i.e. 

( ).
n

x f n  Therefore, a numerical sequence is a variable with numbered values. 

The sequence is denoted by letters with indices: 
1 2 3
, , , , ,

n
x x x x , or  n

x  in 

short, where 
n

x  is a common member of the sequence. 

Definition 3.2. A sequence  n
x  is called convergent if there exists a 

number 
0

x  such that for an arbitrary number 0   there exists a number 

( )N N   such that for all ( )n N   the inequality holds 

0n
x x   . 

In this case, the number 
0

x  is called the limit of the sequence  n
x . Convergence 

of the sequence  n
x  to its limit (numbers 

0
x ) is concisely denoted as follows: 

0
lim

n
n

x x


 , 

or 
0n

x x  by n   . 

Geometrically, the definition of the boundary of a numerical sequence 

means that starting from the number ( )n N  , all members of the sequence  n
x  

will belong to the interval ( , )x x   , which is called the ε-circle of the 

boundary point 
0

x . 

Number e . We present the formula for finding the second important limit 

of a special numerical sequence  n
x , which generates the transcendental number e : 

1
lim 1

n

n

e
n

 
  

 
.                                         (3.1) 
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Formula (3.1) will later play an important role in the calculations of various 

limits. In addition, the results of such a theorem are often used in some theoretical 

and practical problems. 

Theorem (“about two policemen”). If the numerical sequences  n
x  and 

 n
z  are convergent, have a common boundary lim lim ,

n n
n n

x z
 

  and 
n n n

x y z   

by 
0

n N , then the sequence {y
n
} is also convergent; at the same time, the 

boundaries of all three sequences coincide: 

lim lim lim
n n n

n n n

x y z
  

  . 

Let’s consider a number of examples of finding the limit of various 

numerical sequences. 

Example 3.1. Find the limit of the numerical sequence  n
x : n

n
x n . 

The solution. To calculate this limit, we use the well-known inequality dis-

cussed above: 

1
( 1)

n n
n n


  ,  3n  . 

It follows that 
1

1

n

n
n

 
  
 

. The plan of the following transformations is to 

construct a series of inequalities, which is used in the “two policemen” theorem. 

Let’s do some transformations. Let’s denote 1a     and expand the ex-

pression (1 )
n n

a     according to Newton’s binomial formula: 

2 2( 1) ( 1)
(1 ) 1

2! 2!

n n nn n n n
a n

 
             ,  1a   . 

It is obvious that the inequality 1
2

n
n    holds for 2n  , therefore 

2 2
( 1)

4

n n a
a


 . 

We replace n
a n  and write the previous inequality in the new variables: 

2 2
( 1) 2 2

  1   1
4

n

n n
n n

n n n
n n


       . 

The first inequality is obtained – the restriction of the n
n  expression from 

above. Now we obtain the second inequality to limit the same expression from 

below. Let’s use the inequality 
1

1

n

n
n

 
  
 

 obtained at the beginning of the 
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solution, from which we have the estimate 
1

1
n

n
n

  . Now let’s write the double 

inequality: 

1 2
1 1

n
n

n n
    . 

As a result of the transition to the limit for n    in these inequalities, we 

obtain the desired limit: 

lim 1
n

n

n


 . 

Note that there is another way of calculating this limit. 

Example 3.2. Find the limit of the numerical sequence  n
x : n

n
x a , 1.a   

The solution. To calculate this limit, we use Bernoulli’s inequality: 

1 ( 1)
n

n     , 1,  2n   . 

It follows from the well-known inequality (1 ) 1
n

n      if 1     is taken. 

So, let’s make the n
a   replacement and write the corresponding 

Bernoulli inequality in new notation: 

1
( ) 1 ( 1) 1 ( 1) 1

nn n n n
a

a n a a n a a
n


          . 

An upper bound for the expression ( 1)
n

a   is obtained. Since 1a   , the 

value of ( 1)
n

a   is bounded from below by zero; we have the following double 

inequality: 

1
0 1 ,  1

n
a

a a
n


    . 

In these inequalities, let’s go to the limit for n   . According to the theorem 

“about two policemen”, we obtain the desired limit of the sequence n

n
x a : 

lim 1
n

n

a


 . 

Note that this limit can be calculated in another way. 

Example 3.3. Find the limit lim
n

n

x


 of a numerical sequence 

 
1 1

( 2) 3

( 2) 3

n n

n n n
x

 

  
  

  

. 
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The solution. To calculate this limit, we take out the largest terms in the 

numerator and denominator in parentheses and reduce by 3
n

: 

1

1 [( 2 3) 1]

3 [( 2 3) 1]

n

n n
x



 
 

 
. 

After passing to the border, we get: 

1

1 [( 2 3) 1] 1
lim lim

3 [( 2 3) 1] 3

n

n n
n n

x


 

 
 

 
. 

Example 3.4. Find the limit lim
n

n

x


 of the numerical sequence  n
x : 

2

2

1

1

n

n n

a a a
x

b b b

   


   
, 1a  , 1b  . 

The solution. We have geometric progressions in the numerator (factora ) 

and in the denominator (factor b ). To calculate the limits of the sequence, we 

write down the sums of these geometric progressions: 

1

1

1 1

1

1 11

1 1 1

1

n

n

n n n

a

b aax
b a b

b





 



   
  



. 

Since 
1

0
n

a

  and 

1
0

n
b


  are given by n   , after passing to the boundary 

we obtain: 

1

1

1 1 1
lim lim

1 1 1

n

n n
n n

b a b
x

a b a




 

  
 

  
. 

Example 3.5. Find the limit lim
n

n

x


 of the numerical sequence  n
x : 

84 2
2 2 2 2

n

n
x      . 

The solution. Let’s make elementary transformations: 

1 1 1 1 1
1

84 2 2 4 8 2 22 2 2 2 2 2
n n n

n
x

    

       . 

We find the limit of the resulting expression: 

1
1

2
1

lim lim 2 0 2
2

n

n n
n n

x


 

    . 
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Example 3.6. Find the limit lim
n

n

x


 of the numerical sequence  n
x : 

1 1 1

1 2 2
n

x
n n n

   
 

. 

The solution. We will use two inequalities that were considered during the 

study of the topic “Mathematical Induction Method”: 

1
1

n

e
n

 
  

 
  and  

1

1
1

n

e
n



 
  

 
,  1n  . 

We prologarithmize the first of these two inequalities: 

 
1 1 1 1

ln 1 1 ln 1 ln 1 lnn n n
n n n n

   
           

   
. 

We will successively give the natural number n  increasing values (starting 

with 1n  ) and write the resulting inequalities one below the other in the follow-

ing way: 

 
1

ln 2 ln( 1)
1

n n
n

   


; 

 
1

ln 3 ln( 2)
2

n n
n

   


; 

 
1

ln 4 ln( 3)
3

n n
n

   


; 

…………………………. 

 
1

ln 2 1 ln(2 )
2

n n
n

   . 

Now add all these inequalities; as a result, we get the following inequality: 

  ll nn 2
2

1
1 1 1 1 1 1 1

1 2 2 1 1 2
1)

2
ln(

n

n n n n n
n

n n
n

 
  


    


   

  



. 

We prologarithmize the second of the mentioned two inequalities: 

 
1 1 1 1

( 1) ln 1 1 ln 1 ln 1 ln
1 1

n n n
n n n n

   
            

    
. 

Next, similarly to the previous one, we obtain the following inequality: 

 
1

l
2

n 2
1 1 1 1 1

ln 2
1

l
2

)
1 2

n
2

(
n n n n

n
n n

n        
   

 . 
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Let’s combine both obtained inequalities into one dual: 

2 1 1 1 1
ln ln 2

1 1 2 2

n

n n n n

 
     

   
. 

Let’s pass in it to the boundary for n   ; according to the theorem “about 

two policemen” we have: 

1 1 1
lim lim ln 2

1 2 2
n

n n

x
n n n 

 
     

  
.            (3.2) 

We get an interesting and useful result: lim ln 2
n

n

x


 . 

Formula (3.1) is often used in practical work with numerical series. 

Remarks 3.1. In addition, one more useful inequality of the following form 

was obtained: 

1 1 1
ln 1

1n n n

 
   

  
, 

used when proving the existence of the number e . 

Remarks 3.2. From the last inequality, substituting the variables, you can 

get the following inequality: 

 ln 1 1e


        , 0  . 

Example 3.7. Find the limit lim
n

n

x


 of the numerical sequence  n
x : 

( 1)
n

n
x n a  , 0a  . 

The solution. We introduce the substitution 
1

z
n

  and rewrite the general 

term of the sequence as follows: 

1

1 1
( 1)

1

zn
n

a a
n a

z

n

 
   , 

1
0z

n
  ,  if  n   . 

Now the task is reduced to calculating the following limit: 

0 0 0

1; 01 1
lim lim lim

log ( 1)log ( 1)log ( 1);

zz

z y y
aaa

y a ya y

yz yz y

y

  

  
   

 

 
1

1
0 0

1 1
lim lim ( 1) ln

log
log ( 1)

y

y y
ay

a

y e a
e

y

 

     



. 
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The process of solving this problem will be significantly reduced if you use 

the equivalence table. For the function 1
n

a  , this equivalence has the form 

2

1
ln

2

2

1 ,
1 12!

1 1 ln ln
21

0, ln

z

a
n n

z
e z

a e a a
n n

if z z a
n

  

    

 

,  if  n   . 

Further, this problem is easy to solve. 

Therefore, the limit of the given sequence is as follows: lim ln
n

n

x a


 . 

Example 3.8. Find the limit lim
n

n

x


 of a numerical sequence 

   2
( )

n pn

n
x n a a


 

 

where 0a  , 0p   is a fixed real number. 

The solution. We use the results of the previous problem and write down 

the expression of the general term 
n

x  of the sequence using the equivalences given 

above (n   ): 

1
ln 1

1 ln
a

n na e a
n

   ; 

1
ln 1

1 ln
a

n p n p
a e a

n p

 
  


; 

2 2 1 1
( ) 1 ln 1 ln ln

n pn

n

np
x n a a n a a a

n n p n p

  
       

  

. 

We will have a limit in the resulting expression for n   : 

lim ln lim ln
n

n n

n
x p a p a

n p 

    


. 

 

3.2. The technique of calculating the limits 

of recurrent numerical sequences 

 

Consider a typical example of calculating the limit of a recurrent numerical 

sequence without proving its convergence. The approach used in this example 

belongs to Euler. 

Example 3.9 (recurrent sequences). Find the limit lim
n

n

x


 of the numerical 

sequence  n
x , which is given by the recurrent formula: 



39 

 

1

2
2

n n

n

x x
x 




 , 1

x a , 2
x b . 

The solution. Let’s rewrite the given recurrence relation as follows: 

2 1
2 0

n n n
x x x

 
   . A second-order linear equation in finite differences is ob-

tained, the solution of which is sought using the following substitution (Euler): 
n

n
x q , where q  is an unknown number. We will find this number. by substi-

tuting this expression into the equation in finite differences: 

2

1 2

1
2 1 0 1,

2
q q q q       . 

We build a junction according to the following scheme: 

1 1 2 2

n n

n
x C q C q  ,      (3.3) 

where 
1 2
,  C C  are unknown constants. We determine them from the initial 

conditions of the problem 
2

x b
1

x a : 

1 1 1 2 2 1 2

1

2
x a C q C q C C     ; 

2 2

2 1 1 2 2 1 2

1

4
x b C q C q C C     . 

A system of two linear equations with respect to unknown 
1 2
,  C C  constants 

is obtained: 

1 2

1 2

1
;

2

1
.

4

C C a

C C b


 




  


 

From this system we find: 

1 2

2 4
, ( )

3 3

a b
C C b a


   . 

Let’s substitute the obtained constants into formula (3.3) and construct an 

expression for the required limit: 

2 4 1
1 ( )

3 3 2

n

n

n

a b
x b a

  
     

 
. 

Now we will find the limit of this expression for n   : 

2
lim

3
n

n

a b
x




 . 
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We will meet with the solution of other examples on the topic of calculating 

the limits of recurrent sequences in the next paragraph. But before calculating the 

limits of such sequences, the proof of their existence will be given using an im-

portant theorem on the necessary and sufficient conditions for the convergence of 

numerical sequences. 

 

3.3. The technique of applying the theorem on necessary and 

sufficient conditions for the convergence of a numerical sequence. 

Use of Stolz’s theorem to find limits of sequences 

 

In the future, we will use the important theorem on the necessary and suf-

ficient conditions for the existence of the limit of a numerical sequence. 

Theorem. If a nondecreasing (nonincreasing) sequence  n
x  is bounded 

from above (from below), then it is convergent. 

Therefore, to prove that a given sequence  n
x  is convergent, two facts 

must be established: 

a) limitation of sequence  n
x ; 

b) its monotony. 

We will show how this theorem “works” in practice. 

Example 3.10. Prove that the sequence  n
x : 

10 11 12 9

1 3 5 2 1
n

n
x

n


    


 is 

convergent. 

The solution. We immediately note that for 10n  , the fractional factor 

9
( )

2 1

n
q n

n





, which forms the common term of the sequence 

n
x , becomes equal 

to one and then decreases to 
1

2
 as the number n  increases, that is, ( ) 1q n   for 

10n  . To investigate the monotonicity of  n
x , consider the proportion of the 

ratio of two consecutive elements of this sequence: 

1

1

10
( 1) 1  ,  9

2 1

n

n n

n

x n
q n x x n

x n






      


. 

Hence, the sequence  n
x  is monotonically decreasing. Now let’s check its 

boundedness from below. Since all factors ( )q n  that form the common member of 

the sequence 
n

x  are positive, their product is always greater than zero, that is, all 

elements of  n
x  are bounded from below by zero. 
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Thus, it is proved that the given sequence is monotonically decreasing and 

bounded from below. Therefore, according to the given theorem, it is convergent. 

It is obvious that the limit of this sequence is zero. 

Example 3.11. Prove that the sequence  n
x : 

1 1

1 1
, 0

2
n n

n

x x x
x



 
   

 

  is 

convergent. 

The solution. First, we prove that the sequence is bounded from below: 

1

1 1 1
; 2 1

2
n n n n

n

x x t x t x
x t



 
        

 

, 

if  1n  . 

Thus, the sequence  n
x  is bounded from below. Now let’s show it monotony. 

To do this, we construct and estimate the value of the ratio of two adjacent ele-

ments  n
x : 

1

12

1 1
1 1

2

n

n n

n n

x
x x

x x





 
     

 

. 

Therefore, the sequence is nonincreasing and is bounded from below, so it 

has a certain limit. Let us denote this limit by a  and find it. To do this, let’s go to 

the limit in the recurrent formula that specifies the sequence  n
x : 

2

1

1 1 1 1
lim ( ) lim 1 0

2 2
n n

n n
n

x x a a a
x a


 

   
          

  

. 

The only root that satisfies the condition of the problem is 1a  . 

How can the convergence process of this sequence be graphically interpreted? 

Remark. However, there are sequences that are not monotonic, but con-

vergent. 

Stolz’s theorem is used to find the limits of some sequences. 

Theorem (Stolz). Let  n
y  be an infinitely large increasing sequence and let the 

sequence 1

1

n n

n n

x x

y y





 
 

 

 be convergent and have the limit a . Then the sequence  n n
x y  

is also convergent and has the limit a . Therefore, the following equality holds: 

1

1

lim limn n n

n n
n n n

x x x

y y y



 


   
   

    . 

We will give several examples using this theorem. 
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Example 3.12. Find the limit lim
n

n

x


 of the numerical sequence  n
x : 

2 3

2 3

2

1 1 1 1
ln 2 2 2 2

2 2 2 2

2

n

n

n
x

n

        
           

        
 . 

The solution. We have the quotient of the common terms of two infinitely 

large sequences n

n

n

u
x

v
 . Let’s use Stolz’s theorem: 

1

2 2

1

1
ln 2

ln 2 ln 22
lim lim lim lim lim

2 2( 1) 4 4

n

n

n n n

n
n n n n n

n n n

u u u n
x

v v v n n n



    


  
        

          
        

 
 

. 

Example 3.13. Find the limit lim
n

n

x


 of a numerical sequence 

 
!

n n

n
x

n

 
  
 

. 

The solution. Let us present the general term of the sequence as follows: 

1
ln ln (ln 1 ln 2 ln )

!

!

n

n
n n

n n

n n

n
x e e

n

 
    

    . 

Let’s consider the following sequence separately: 

1
ln (ln1 ln 2 ln )

n
z n n

n
     . 

Let’s use Stolz’s theorem and find its limit: 

1 ln (ln 1 ln 2 ln )
lim lim ln (ln 1 ln 2 ln ) lim

n
n n n

n n n
z n n

n n  

      
         

     

1

1

ln ( 1) ln( 1) ln )
lim lim lim

1

n n n

n n n
n n n

u u u n n n n n

v v v



  


        
             

 

( 1)

1
lim ( 1) ln lim ln 1 ln 1

1 1

n

n n

n
n e

n n



 

     
          

        

. 

Now let’s write the sought limit lim
n

n

x


: 

1
lim

n
n

x e e


  . 
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So, it is proved: 

lim
!

nn

n
e

n

 
 

 

. 

Example 3.14. Find the limit lim
n

n

x


 of the numerical sequence  n
x :  

4 2

1 2 3 2 3 4 ( 1)( 2)

7
n

n n n
x

n n

        


 
. 

The solution. We have the quotient of the common terms of two infinitely 

large sequences 
n

u  and 
n

v : n

n

n

u
x

v
  . Let’s use Stolz’s theorem; get: 

 
1

4 2 4 2

1

( 1)( 2)
lim lim lim lim

7 ( 1) ( 1) 7

n n n

n
n n n n

n n n

u u u n n n
x

v v v n n n n



   


      
       
               

3

( 1)( 2) 1
lim

4 4n

n n n

n

  
  

  . 

Here, the terms that have a degree less than 3 are marked with dots 

(the main term is highlighted). 

Example 3.15. Find the limit lim
n

n

z


 of the numerical sequence  n
z  with 

complex terms: 

5

3

( 5) 5 4

( 1)3 ( 2)

n n

n n n

n n i
z

n n i

   


   
. 

The solution. Let’s take out the corresponding factors in parentheses that 

determine the behavior of the numerator and denominator at infinity. After that, 

we go to the boundary: 

3 5

3 5

2 3

2 3

4
5 ( 5)

5( 5) 5 4
lim lim lim

( 1)( 3) 5 ( 3)
( 1) 5

5

n

n

n n

n n n nn n n
n

n

n n i

n n i
z

n n i
n n i

  

  
    

       
  

     
   

   

5

3

3

2

4
0, ;

55
lim

( 3)
( 1) 0,

5

n

nn

n

n if n
n

i
n i

n if n



 
    

 
   


   

. 
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Tasks for classroom and independent work 

3.1. Find the limit lim
n

n

x


 of the numerical sequence  n
x : 

3
ln

( )

n pn

n

p
x n a a a

n n p

 
   

 

, 

0a  , 0p   are fixed real numbers. 

3.2. Find the limit lim
n

n

x


 of the numerical sequence  n
x : 

, 1, 1
2

n
n n

n

a b
x a b

 
   
 

 are fixed real numbers. 

3.3. Prove that the given sequence  n
x  is convergent: 

1 1 1
1 1 1

2 4 2
n n

x
     

          
     

. 

3.4. Prove that the given sequence  n
x  is convergent: 

1 1 1
1 1 1

2 4 2
n n

x
     

          
     

. 

3.5. Prove that a recursively given sequence  n
x  is convergent and find its 

limit: 
1 1

1
(2 6 ), 0

6
n n n

x x x x

    . Draw a diagram of the sequence convergence 

process. 

3.6. Find the limit lim
n

n

x


 of the numerical sequence  n
x , which is given by 

the recurrent formula: 1

2

3

2

n n

n

x x
x 




 , 

1
x a , 

2
x b . 

3.7. Prove that a recursively given sequence  n
x  is convergent and find its 

limit: 
1 12

1 1
(1 ), 3

3
n

n

x x
x


   . Draw a diagram of the sequence convergence process. 

3.8. Find the limit lim
n

n

x


 of the numerical sequence  n
x : 

100 100 100 100

100

1 2 3

101
n

n n
x

n

   
  . 

3.9. Prove that the given equality is correct: 

1 2 3
lim limn

n n
n n

x x x x x
 

     , where : 0
n

n x  . 
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3.10. Find the limit lim
n

n

y


 of the numerical sequence  n
y : 

2 2 2 2 2 2 2 2

1 2 3

3 2

1 2 3

2 3 2 5

n

n

x x x n x
y

n n n

       


  
, if 

0
lim

n
n

x x


 . 

3.11. Find the limit lim
n

n

x


 of the numerical sequence  n
x : 

1 1 1 1
ln

2 3 4

p p p p

n

e e e e
n

x
pn

        
           

        
 . 

3.12. Find the limit lim
n

n

x


 of the numerical sequence  n
x : 

1000 1000 1000 1000

1001

1 2 3
n

n
x

n

   
 . 

3.13. Find the limit lim
n

n

z


 of the numerical sequence  n
z  with complex 

terms: 

2

( 3) 4

2 ( 4)

n n

n n n

n i
z

n i

  


  
. 

3.14. Give an example of a convergent sequence that is not monotonic. 

Answers and instructions 

3.1. 2
lnp a .   3.2. ab .  3.3. Convergent. 

3.4. Convergent.  3.5. 1 6 .   3.6. 2b a . 

3.8. 1 2 .    3.10. 2

0
6x .   3.11. 1. 

3.12. 
1

1001
    3.13. i . 
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PRACTICAL LESSON  4 

The limit of a function of one variable. Cauchy criterion. 

Infinitely large and infinitely small functions. 

Equivalent infinitesimals. Table of equivalences. 

The technique of revealing the main uncertainties 

 

Remark. Two practical classes should be taken to master the material 

presented here. At the beginning of this topic, we will present the main concepts 

and definitions that will be used further. 

 

4.1. Two definitions of the limit of a function 

(according to Heine and according to Cauchy). 

The Cauchy criterion for the limit of a function 

 

First Definition of the limit of a function (Heine). The number A is called 

the limit of the function  at the point , if for an arbitrary sequence 

 converging to , where , the sequence of values of the 

function  has a limit equal to the number A. 

Second Definition of the limit of a function (Cauchy). A number А is 

called the limit of a function  at the point , if for an arbitrary number 

 there exists a number  such that for all  that satisfy the 

inequality , the inequality  is satisfied. 

Definition. A number А is called the limit of a function  on the 

left (or the left limit) at the point , if for any number  there exists a 

number  such that for all  the inequality 

 is fulfilled. 

Definition. A number  is called the limit of a function  on the 

right (or the right limit) at the point , if for any number  there exists a 

number  such that when  the inequality 

 is satisfied. 

Theorem 4.1. Let the function  be defined in some neighborhood 

 of the point  (except, perhaps, the point  itself). Then, in order for the 

 y f x
0

x

 n
x

0
x

0
,

n n
x X x x 

  n
f x

 y f x
0

x

0    0    x X

0
0 x x     f x A  

 y f x

0
x 0 

  0     0 0
;x x x 

 f x A  

B  y f x

0
x 0 

  0     0 0
;x x x  

 f x B  

 y f x

X
0

x
0

x
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function  to have a limit at the point , it is necessary and sufficient for 

its right  and left  limits to exist and these limits to 

coincide, i.e. 

( ) . 

Theorem 4.2 (Cauchy Criterion). In order for there to be a limit of the 

function 
  

at , it is necessary and sufficient for an arbitrary number 

 to find a number  such that for any arguments  that 

satisfy the inequalities  and , the following 

inequality would hold for the difference of the corresponding values of the 

function: . 

 

4.2. Definition of infinitely small and infinitely large functions. 

The first and second important limits, the technique 

of their calculation 

 

Definition. A function  at  is called infinitely large (that 

is, has a limit ) if it is defined in some neighborhood of the point , except, 

perhaps, the point  itself, and for an arbitrary number  there is a number 

 such that for all , which satisfy the inequalities , 

the inequality  is fulfilled. It is denoted as follows:  or 

 at . 

Definition. An infinitely small value around a point  is a variable value 

(function) whose limit at this point is equal to zero. 

In particular, a function  is called an infinitesimal value (or an 

infinitesimal function) if  or  if : ; . 

We will give the definition of an infinitesimally small value in the 

language . 

Definition. A function  is called infinitesimally small value at 

 ( ) if for an arbitrary number  there exists such a number 

 that for all  satisfying the inequality , 

the inequality  is fulfilled.  

 y f x
0

x

 
0 0

lim
x x

f x
 

 
0 0

lim
x x

f x
 

   
0 00 0

lim lim
x x x x

f x f x A
   

   
0

lim
x x

f x A


 

 f x
0

x x

0    0    ,x x X

0
0 ( )x x    

0
0 ( )x x    

  ( )f x f x  

 y f x
0

x x


0

x

0
x 0M 

  0M   x
0

0 x x   

 f x M  
0

lim
x x

f x


 

 f x  
0

x x

0
x

 x

0
x x x    

0

lim 0
x x

x


  lim 0
x

x




" " 

 x

0
x x x   0 

  0 ( 0)M     x
0

( )x x x M  

 x 
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To reveal the classical uncertainty 
0

0

 
 
 

 with trigonometric functions, the 

first important limit is very often used: 

0

sin
lim 1
x

x

x

 
 

 
. 

The second important limit is used to reveal the uncertainty  1
 : 

1
lim 1

x

x

e
x

 
  

 
. 

Remarks 4.1. Prove independently that .  

Remark 4.2. When finding specific limits, it is advisable to use the first and 

second important limits in this form  

;   where  

 

4.3. The concept of equivalent infinitesimal functions. 

Table of equivalences 

 

Let  i.e.  be an infinitesimal function at  Then 

the following equivalences hold in the vicinity of the point , which are 

written here with accuracy to the values of the first order of smallness (except for 

the function ):  

1) ~ ; 

2) ~ ; 

3) ~ ; 

4) ~ ; 

5) ~ ; 

6) ~ ; 

7) ~ ; 

8) ~ ; 

9) ~ ; ; 

 
1

0

lim 1 z

z

z e


 

 

 

 

 0 0

sin
lim lim 1

sinx x x x

x x

x x

 

  

      

0

1

lim 1 ,
x

x x

x e





   
0

lim 0.
x x

x




 
0

lim 0,
x x

x


  x
0
.x x

0
x x

cos

sin 

tg 

arcsin 

arctg 

1e

 

1a

 ln a

 log 1
a

 log
a
e

 ln 1  

 1 1
k

  k 0k 
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10) ~ . 

Remarks 4.3. It is very easy to prove these equivalences using the 

Lhospital‒Bernoulli rule (see below in the Section “Differential calculus of 

FOV”). 

Remark 4.4. The above formulas 1)−10) are used when finding 

equivalences of more complex functions. For example, around a point  the 

function  is equivalent to: 

~ . 

Remark 4.5. The above equivalences should be used very “carefully” from 

the point of view of mathematical correctness. The choice of the number of 

members in the representation of the investigated function through equivalent 

expressions also follows from the condition of each problem, taking into account 

its context. 

 

4.4. The technique of revealing the main uncertainties 

 

In the simplest cases, finding the limit is reduced to substituting 

the limit value of the argument  into the function . But often such a 

substitution leads to uncertain expressions. Let’s consider some of them: 

1) the ratio of two infinite quantities forms the “classical” uncertainty of the 

form ; 

2) the difference between two infinitely large values is the uncertainty of 

the form ; 

3) the product of an infinitely small function by an infinitely large one is 

the uncertainty of the form ; 

4) the ratio of two infinitely small quantities (  and  

at ) forms a “classical” uncertainty of the form ; 

5) if  and  at , then the expression  

forms an indeterminacy of the form ; 

6) if  and  at , then the expression  is 

uncertainty of the form ; 

1 cos

2

2



0x 

 23( ) sin ln 1 tgf x x  
 

 
2

3( ) sin ln 1f x x 
  

2 2
3 3sin x x

 
0

lim
x x

f x


0
x  f x

{ } 

   

 0  

 1
0x   2

0x 

0
x x {0 0}

 1
0x   2

0x 
0

x x  
 2

1

x

x




 
0

0

  0x   x  
0

x x  
 x

x




 
0
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7) if  and  at , then the expression  is 

an uncertainty of the form . 

Definition. The operation of finding the limit in these cases is called 

uncertainty disclosure. 

Let’s consider some individual cases of disclosure of the above-mentioned 

uncertainties. 

1. Uncertainty of the form  given by the ratio of two polynomials. 

Example 4.1. Find the limit: . 

The solution. We have “classical” uncertainty of the form . Let’s 

divide the numerator and denominator by : 

 

The applied approach is general: to reveal the uncertainty of the form 

given by the ratio of two polynomials, the numerator and denominator 

must be divided by  where  is equal to the highest order of the fractional 

polynomials. 

2. Uncertainty of the form  given by the ratio of two polynomials. 

Example 4.2. Find the limit: . 

The solution. Since  and , we 

have uncertainty of the form . To reveal this uncertainty, let’s factor the 

numerator and denominator: 

; . 

As a result, we have: 

. 

This is also a general approach. The factor (in this example, it is ), 

through which the numerator and denominator go to zero, is sometimes called the 

critical factor. 

  1f x   x  
0

x x  
 x

f x


 1


{ } 

5 2

3 2 5

3 6
lim

2 3 10 4x

x x

x x x

 

  

{ } 

5
x

5

5 2 3 5 3 5

3 2 5

5

5 2 35 2 3

3 6 3 6
1 1

3 6 1
lim lim lim .

2 3 102 3 102 3 10 4 4
44

x x x

x
x x x x x x

x x x
x

x x xx x x

  

 
    

   
  

    
     

 

{ } 

,x




{0 0}

3 2

23

3 3
lim

5 6x

x x x

x x

  

 

 
3 2

3

lim 3 3 0
x

x x x


     
2

3

lim 5 6 0
x

x x


  

{0 0}

     
3 2 2

3 3 3 1x x x x x           
2

5 6 3 2x x x x    

   

   

23 2 2

23 3 3

3 13 3 1
lim lim lim 10

5 6 3 2 2x x x

x xx x x x

x x x x x  

    
  

    

3x 
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Therefore, in order to reveal the uncertainty  given by the ratio of two 

polynomials, it is necessary to select a critical factor in the numerator and in the 

denominator and reduce the fraction to it. If at the same time the factorization 

turns out to be difficult, then it is necessary to divide the numerator and 

denominator into a critical factor by a “corner”. At the same time, the hint, which 

is the critical factor, is contained in the task itself under the icon (

). 

3. Uncertainty  given by irrational expressions. 

Example 4.3. Find the limit: . 

The solution. Here we have uncertainty of the classical form , and 

 – is the critical factor. Let’s get rid of the irrationality in the numerator by 

multiplying both the numerator and the denominator by the conjugated 

expression. As a result, we get 

 

. 

4. Uncertainty  given by irrational expressions. 

Example 4.4. Find the limit: . 

The solution. 

 

 

. 

{0 0}

lim
x a

x a

( ) 0x a  

{0 0}

2

3

7 4
lim

3x

x

x

 



{0 0}

 3x 

   
       

2 2
2 2

3 3 32 2

7 4 7 47 4 9
lim lim lim

3 3 7 4 3 7 4
x x x

x xx x

x x x x x
  

     
  

      

   

   
23 32

3 3 3 3
lim lim

47 43 7 4
x x

x x x

xx x
 

  
  

   

   

 2 2
lim 3 5 7
x

x x x x


   

 2 2
lim 3 5 7
x

x x x x


    

   2 2 2 2
2 2

2 2 2 2

3 5 7 3 5 7 3 5 7
lim lim

3 5 7 3 5 7
x x

x x x x x x x x x x x x

x x x x x x x x
   

           
  

       

2 2

2

7
8

8 7
lim lim 4

3 5 73 5 7
1 1

x x

x x

x x x x

x x x
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5. Uncertainties of the type  given by expressions containing 

trigonometric functions are often revealed by means of the first significant 

limit. 

Example 4.5. Find the limit: . 

The solution. 

 

 

6. When revealing the uncertainty of the species , the second 

important limit is used. 

Example 4.6. Find the limit: . 

The solution. 

 

Let’s consider a number of examples of different types on the topic of 

calculating limits.  

Example 4.7. Find the limit 
0

(1 ) 1
lim

n

x

x

x

  
 
 

. 

The solution. Let’s establish the type of uncertainty that arises when 

finding a given limit. By substituting the sign of the limit instead of x  zero, we 

obtain an uncertainty of the type 
0

0

 
 
 

. Next, we will open the brackets for 

Newton’s binomial and simplify the resulting expression: 

 
2 2

2 1

0 0 0

(1 ) 1 0 1 1
lim lim lim

0

n n

nn

n
x x x

x nx C x x
n C x x n

x x



  

          
          
      

Іndependent work of students. Solve this example again after studying the 

Lhospital‒Bernoulli method and compare the two approaches. 

{0 0}

30

2 sin sin 2
lim
x

x x

x



 
3 30 0

2 sin 1 cos2 sin sin 2 0
lim lim

0x x

x xx x

x x 

   
   
 

2

2

3 20 0 0

sin 2 sin
sin 1222 lim 4 lim lim 4 1 1.

4x x x

xx
x

x

x x x  

 
  

 
      

 1


 
2

(sin )

0

lim cos
x

x

x




     

2

2 22 00
2

cos 1
1 cos 1 limlim

(sin ) 2(sin )
cos 1 (sin )

0 0

1
lim cos 1 lim 1 cos 1 .

xx

xx
x

x xx
x x

x x

x x e e
e
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Example 4.8. Find the limit 
2

0

1 1

lim

m

x

x
x

m

x

 
  

 

 

 
 

. 

The solution. To find the limit, we will replace the variables: 

2
0

1 1
1 1; 1 (1 )0

lim
0 0; (1 ) 1

m
mm

mx

x
x

y x x ym

x y x y

 
  

        
    
      

   

2

22
0 0

2

1 ( 1)(1 ) 1
1 1

2
lim lim

[(1 ) 1] ( 1)
1 1

2

m
m

m
y y

m

m my
y my y yy

mm

y m m
my y y

 

    
         

     
     

            

 

2

2 2 2
0

( 1)

12lim
2y

m
y

m

m y m

 


  
  

 
 

. 

Іndependent work of students. Solve this example again after studying the 

Lhospital‒Bernoulli method and compare the two approaches. 

Example 4.9. Find the limit 
2 3

2
0

1 5 1
lim

1 cos 2 6x

x x

x x

   
 
  
 

. 

The solution. We multiply the numerator and denominator by the conjugate 

expression 2 3
( 1 5 1)x x    with respect to the numerator and replace the 

expression (1 cos 2 )x  with its equivalent representation: 

 

2 3 2 3

2
0 0 2 2 2 3

1 5 1 0 1 5 1
lim lim

1 cos 2 6 0 (2 sin 6 ) 1 5 1
x x

x x x x

x x x x x x
 

 
         

                 
   

 

2 3 2

2
0 02 2 2 3

sin 5 1
lim lim

0 8 2 16(2 6 ) 1 5 1
x x

x x x x x

x xx x x x
 

 
  

           
 

. 
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Example 4.10. Find the limit 
2 3

0

1 1 2
lim

sinx

x x

x x

    
 

 

. 

The solution. 

2 3 2 3
0 0

1 1 2 0 ( 1 1) ( 1 1)
lim lim

sin 0 sinx x

x x x x

x x x x 

            
      

     

 

   

 
2 3 2 3

0 0

1 1 1 1

( 1 1)( 1 1) 1 1
1 1 1 1

lim lim
sin sinx x

x x x x x
x x

x x x x
x x

x x x x 

      
  

         
        

   
    

 
 

 

2

2
0

2

18lim
4x

x

x

 
 

   

 
 
 

. 

Example 4.11. Find the limit 

2 3 4 2 3 454

3
0

1 8 4 sin ( ) 6 tg( ) 12 1 10 5 tg( ) 5 sin ( ) 16
lim

4x

x x x x x x x x

x

         
 
 
  . 

The solution. We have uncertainty 
0

0

 
 
 

. To find the limit, we will use the 

table of equivalences (No 1, 2, 9): 

2 3 4 2 3 454

3
0

1 8 4 sin 6 tg( ) 12 1 10 5 tg( ) 5 sin 20
lim

4x

x x x x x x x x

x

         
 

 
   

2 3 4 2 3 4

3
0

3
1 2 sin tg( ) 3 [1 2 tg( ) sin 4 ]

(1 ) 1 , 2lim
40

k

x

x x x x x x x x
k

xif

 

 

 
        

  
   

  
 

 

2 3 4 2 3 4

3
0

3
sin ( ) tg( ) 3 tg( ) sin ( ) 4

2lim
4x

x x x x x x

x

 
     

 
  

 
 

 

2 3 2 3 4 3 4

3 3
0 0

3 1

12 2lim lim
4 4 8x x

x x x x x x x

x x 

   
     

   
     

   
   

. 
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Example 4.12. Find the limit 

1

1 1 1 1

0

lim

x x x x x

x

a b c d

a b c d

   



   
 

   

, where 

, , ,a b c d  positive real numbers are fixed. 

The solution. We have uncertainty  1
 . Let’s make the following 

transformations:  

 

1

1 1 1 1

0

lim 1

x x x x x

x

a b c d

a b c d

   





   
  

   
1

1 1 1 1

0

1 ln ,( ) ( ) ( ) ( )
lim 1

0

xx x x x x

x

xa a b b c c d d

a b c d if x

 
   



        
    

      
11

0 0

ln ln ln ln ln( )
lim 1 lim 1

a b c d xx

x x

a a b b c c d d a b c d
x x

a b c d a b c d 

    
        

          
ln( ) 1

( )

a b c d
a b c d

a b c da b c d a b c de a b c d       . 

Example 4.13. Find the limit 
1

2
81

81 81 ( 81)
lim

( 81)

n n n

x

x n x

x





    
 

 

, where n   is 

a natural number. 

The solution. We have classical uncertainty 
0

0

 
 
 

. Let’s replace the variable 

as follows: 81x z  , where under the sign of the limit should be written: 0z  . 

Then the given limit will look like this: 

1

2
0

( 81) 81 81
lim

n n n

z

z n z

z





    
 
  . 

We open the brackets in the numerator according to Newton’s binomial and 

after identical transformations we get: 

1

2
0

( 81) 81 81
lim

n n n

z

z n z

z





    
 

   
1 2 2 2 2 2 2 1 1

2
0

( 81 81 81 81 81 ) 81 81
lim

n n n n n n n n n

n n

z

z n z C z C z n z n z

z

     



                
  

 

1 2 2 2 2 2 2

2
0

81 81 81
lim

n n n n n

n n

z

z n z C z C z

z

   



          
  

    
2 3 3 3 2 2

2 2 2

0

81 81 81 ( 1)
lim 81 81

1 2

n n n n n n

n n nn n

n
z

z n z C z C n n
C

     

  



          
     

 

. 
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Іndependent work of students. Solve this example again after studying the 

Lhospital‒Bernoulli method and compare the two approaches.  

Example 4.14. Find the limit 
2

0

81 81 2 81
lim

x p p x p

x x

 



   
 
 

, where p   is a 

fixed real number. 

The solution. Let’s put the common factor in parentheses in the numerator 

and make identical transformations using equivalences up to the members 
2

( )o x : 

2 2
0 0

81 81 2 81 (81 1) (81 1)
lim 81 lim

x p p x p x x

p

x xx x

  

 

        
    

     
2

ln ( ln )
1 ln

2!

x x a x a
a e x a


      

 
2 2

2
0

( ln 81) ( ln 81)
ln 81 ln 81

2! 2!
81 lim

p

x

x x
x x

x

     
           

     
 

 
 

 

2

2 2

2
0

( ln 81)
2

2!
81 lim 81 ln 81 81 16 ln 3

p p p

x

x

x

  
   

       
 

 
 

. 

Here, the terms that have a higher order of smallness than 2
x , are marked 

with dots. 

Іndependent work of students. Solve this example again after studying the 

Lhospital‒Bernoulli method and compare the two approaches. 

Example 4.15. Find the limit 
2

0

( )
lim

x x

x

a x a

x

  
 
 

, where 0a   is a fixed 

real number. 

The solution. Let’s make some transformations, after which we will find 

the limit: 

2

2

2

2

2 2 2
0 0 0

11 1

0 1
lim lim 1 lim

0

x x

x a

x

a

x x x

x
xea

a x ae
x x a x a  

              
             

          
       

    
   

. 
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Example 4.16. Find the limit 
2

1

0

sin
lim

x

x

x

x

 
 
 

. 

The solution. Let’s use the equivalence for the function with accuracy up to 

the second term: 

 

2

22

1

3
3 11

12

6

0 0 0

sin ,sin 6lim 1 lim lim 16
6

0

x

xx

x x x

x
x x

x xx x
e

x x
if x




  

 
     

         
      

 

. 

Example 4.17. Find the limit 
1 1

1 1

lim ( ) x x a

x

x a x
 



 

 
  

 

, where a   is an 

arbitrary fixed real number. 

The solution. Let’s make some transformations, after which we will find 

the limit: 

 

1
11 1 1 1 1

1 1 1

lim ( ) lim 1
x

x x a x x a x

x x

a
x a x x x

x


   

 

   

 
                

   
   

2

1
1 1 1

( )
lim 1 lim

aa a
x

x a xxx a x x

x x

a
x x x e x

x






   

                       

2
ln

( ) ( )

2
lim lim 1

a aa a
x

x a x x a xx x

x x

a a
x e x x e

x x

  
 

 

   
           

   
   

2

2

ln 1 ln
lim 1 1

( ) 2 ( )x

a a a x a x
x

x x x a x x a x

    
                  . 

2

ln 1 ln
lim

2x

a a x a x
a a

x x a x x a

   
             

Example 4.18. Find the limit 

ctg( )

tg
lim

tg

x a

x a

x

a





 
 
 

, where 
2

k
a


   is an 

arbitrary fixed real number. 
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The solution. Let’s make some transformations, after which we will find the 

limit: 

 

1 tg
1 ctg( )ctg( )

tgtg
1

tg
tg tg

lim 1 lim 1 1
tg tg

x
x ax a

ax

a

x a x a

x x

a a

 
   

   
 

 

 

    
        

       

1 tg
1 ctg( ) tg

lim 1 ctg( )tgtg
1 tg

tg
tg

lim 1 1
tg

x a

x
x a x

x aax
a

a

x a

x
e

a



 
     

       
    

 



  
      

    

2

sin 2

tg tg
lim ctg( )

tg

sin( ) cos( ) 1
lim

sin cos sin( ) sin cos

x a

a

x a

x a
x a

a
e

x a x a

a x x a a a





  
   

  
 

  
   

   

. 

Tasks for classroom and independent work 

Find the limit: 

4.1.  4.2. 
 
 

4.3. . 4.4. . 

4.5. 
3 43

4 1054

1 9 5
lim

5 3 3
x

x x

x x


  

  

.  4.6. 
5

( 1)( 2)( 3)( 4)( 5)
lim

(5 1)x

x x x x x

x

    


. 

4.7. 
20 30

50

(2 3) (3 2)
lim

(2 1)x

x x

x

 


. 4.8. 

2

3 2
1

2
lim

1x

x x

x x x

 

  
    

4.9. 
5

2 5
0

(1 ) (1 5 )
lim
x

x x

x x

  


.  4.10. 

2
0

(1 ) (1 )
lim ,  ,

n m

x

mx nx
m n

x

  
 . 

4.11. 
3

4
1

3 2
lim

4 3x

x x

x x

 

 
. 4.12. 

3 2

4 2
2

2 4 8
lim

8 16x

x x x

x x

  

 
. 

4.13. 
3

5
1

2 1
lim

2 1x

x x

x x

 

 
. 4.14. 

100

50
1

2 1
lim

2 1x

x x

x x

 

 
. 

4.15. 
1

2
1

( 1)
lim ,  

( 1)

n

x

x n x n
n

x





  



.  4.16. 

4

2 1 3
lim

2x

х

x

 


. 

4.17. 
2

1

2 1
lim

5 1 4 2x

x x

x x

 

  
.  4.18. 

2
0

1 5 1 5
lim

7x

x x

x x

  


. 

2 3

4

1
lim ;

2 3x

x x

x 

 



5 2

3

4 3 1
lim ;

2x

x x

x 

 



3

3 2

4 1
lim

2 8x

x x

x x 

 

 

4

8

3 2
lim

2 1
x

x

x x
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4.19. 
2

2
0

4 16
lim
x

х

x

 
.   4.20. 

38

1 3
lim

2x

х

x

 


. 

4.21. 
2

3

13 2 1
lim

9x

x x

x

  


.   4.22. 

3

3
2

6 2
lim

8x

x

x

 


. 

4.23. 
38

2 9 5
lim

2x

х

x

 


.    4.24. 

23

2
0

8 3 2
lim
x

x x

x x

  


. 

4.25. 
3

47

2 20
lim

9 2x

x x

x

  

 
.  4.26. 

3
2

1 12
lim

2 8x x x

 
 

  
. 

4.27. 
31

3 2
lim

1 1x x x

 
 

  
.  4.28. 

3

1
1

(1 )(1 ) (1 )
lim

(1 )

n

n
x

x x x

x




  


. 

4.29.  2 2
lim 8 3 4 3
x

x x x x


     . 

4.30.  2
lim 2 4 7 4
x

x x x


   . 

4.31.  2 2
lim 4 3 1 4 5 3
x

x x x x


     . 

4.32.  lim ( )( )
x

x a x b x


   . 

4.33. 
2 2

( 1) ( 1)
lim ,  

n n

n
x

x x x x
n

x

    
 . 

4.34. 
2 2

0

( 1 ) ( 1 )
lim ,  

n n

x

x x x x
n

x

    
 . 

4.35. 
0

cos 7 cos 3
lim

1 cos 2x

x x

x




.  4.36. 

3

0

cos cos
lim

arcsin 3x

x x

x x


. 

4.37. 
3

0

tg sin
lim

sinx

x x

x


.   4.38. 

0

sin 5 sin 3
lim

sinx

x x

x


. 

4.39. 

4

lim tg 2 tg
4x

x x






 
  

 
.  4.40. 

1

lim (1 ) tg
2x

x
x





 
  

 
. 

4.41. 
0

1 4 1
lim

( 1)
cos

2

x

x

x

 


.   4.42. 

2

4

( 4 )
lim

1 sin 2x

x

x








. 

4.43. 

3

3

tg 3 tg
lim

cos
6

x

x x

x
 



 
 

 

.   4.44. 
0 2

1 sin cos 2
lim

tg
2

x

x x x

x

 
. 
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4.45. 
2 1

lim 1 cos
x

x
x

 
 

 
.   4.46.  lim cos 1 cos

x

x x


  . 

4.47. 

1

21
lim

2

x

x

x

x





 
 

 
.   4.48. 

2

2

2

2 8
lim

2 7

x

x

x x

x x

  
 

  
. 

4.49.  
1

2 2

0

lim 1 tg
x

x

x


 .  4.50.  
2

4

lim
tg x

x

tgx




. 

4.51. 
0

lim
ln( 2) ln 2x

x

x  
.  4.52. 

3

3

lim
3

x

x

e e

x




. 

4.53. 

sin 2 sin

0

lim

x x

x

e e

x


.   4.54. 

3

3 4

ln(1 )
lim

ln(1 )x

x x

x x

 

 
. 

4.55. 
0

ln tg
4

lim
sinx

ax

bx





 
 

  .  4.56. 
0

ln cos
lim

ln cosx

ax

bx

. 

4.57.  
1

0

lim
x x

x

x e


 .   4.58. 
1

sin( )
lim

sin( )x

x

x









. 

4.59. 
3

lim ln(1 2 ) ln 1
x

x x

 
  

 
.  4.60. 

2

4 2
0

ln( )
lim

ln( )

x

x
x

x e

x e




. 

4.61. 

2
1

1

0

lim 2 1

x

x x

x

x

e







 
 

 

.   4.62. 
0

arctg( ) arctg
lim
h

x h x

h

 
. 

4.63. Find constants a and b, if 
2

1
lim 0

1x

x
ax b

x

 
   

 

. 

4.64. Find lim ( ) lim ( )
x x

h f x f x
 

  , if 
2 2

2 2
( ) ln

x x a
f x

x x b

 


 

. 

4.65. 
3

0

sin (1 )
lim

x

x

e x x x

x

  
 
 

.  4.66. 
 

sin

30

lim , 0
sin

x x

x

a a
a

x

 
  
 
 

. 

4.67. 
4 2 3

0

2 5 3 6
lim

2

x x x x

x

x

   
 
 
 

. 

4.68.  200lim ( 1) ( 2) ( 200)
x

x x x x


       . 

4.69.  100lim ( 3 1) ( 3 2) ( 3 100)
x

x x x x


          . 
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4.70. 
 

 
5 5

5

0

sin 3 2
lim

arctg 3 2

x x

x xx





. 

4.71. 
   2 3 2 3

3
0

1 2 4 1 2 2

lim .
3

n n

x

x x x x x x

x

      

 

4.72. 
2 2

2

0

lim . 1 1

n m

x

x x
x m x nx

n m





     
          

       

. 

4.73. 
2

1

0

arcsin
lim

x

x

x

x

 
 
 

.   4.74. 

3
ctg( )

0

1 sin cos( )
lim

1 sin cos( )

x

x

x x

x x





  
 

  

. 

4.75. 

4
2 ctg( )

2 2 2 9

2
0

1 cos( ) cos(2 ) cos(3 )
lim 15

1 cos( )

x

x

x x x

x

 
 

 

. 

Answers and instructions 

4.1. 0.    4.2.  .  4.3. 1 2 . 

4.4. 3.    4.5. 3.   4.6. 5
5
 . 

4.7.  
30

3 2 .   4.8.  .  4.9. 10. 

4.10. ( ) 2nm n m . 4.11. 1 2 .   4.12. 1 4 . 

4.13. 1 3 .   4.14. 49 24 .  4.15. ( 1) 2n n  . 

4.16. 4 3 .   4.17. 6 6 .  4.18. 5 7 . 
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4.55. 2a b .   4.56. 
2

( )a b .  4.57. 2
e . 

4.58.   .   4.59. ln 8 .   4.60. 1 2 . 

4.61. 2
e .   4.62. 

2
1 (1 )x .  4.63. 1,  1a b   . 

4.64. 2 ln( )b a .  4.65. 
1

3
.   4.66. 

1
ln

6
a . 

4.67. 180 2 .  4.68. 
201

2
.   4.69. 

303

2
. 

4.70. 

4

2
ln

3
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( )

2

nm n m
. 

4.73. 
1

6e .   4.74. 

2 2

2e

 

.  4.75. 7
e . 



63 

 

Topic IІI. The concept of continuity of functions. 

Study of functions for continuity. Classification of breakpoints. 

Uniform continuity of functions 

 

PRACTICAL LESSON  5 

Continuity of a function. Classification of breakpoints. 

Study of functions for continuity 

 

5.1. Continuity of function at a point. 

Three definitions of continuity of a function 

 

Let us recall some theoretical definitions related to the concept of continuity 

of a function. Let the function  f x  be defined at a point 
0

x  and some neighbor-

hood of it. 

The first definition of the continuity. A function  f x  is called conti-

nuous at a point 
0

x  if the limit of the function and its value at this point are equal, 

i.e.: 

   
0

0
lim
x x

f x f x


 . (5.1) 

If we compare this definition with the definition of the boundary of a func-

tion  
0

lim
x x

f x A


 , then when defining the boundary of a function, the number 
0

x  

could not belong to the domain of the function (for example, as in the function 

sin x
y

x
  at the point 

0
0x  ), and in the case that the number 

0
x belonged to the 

domain of the function, then the value of the function  0
f x could and not coin-

cide with the border A . 

Therefore, a function  f x  will be continuous at a point 
0

x  if and only if 

the following conditions hold: 

a) the function is defined at a point 
0

x  and some neighborhood of this point; 

b) there is a border  
0

lim
x x

f x


; 

c) the boundary of the function  f x  at a point 
0

x  and the value of the 

function at this point coincide, that is, equality (5.1) is fulfilled. 

Formula (5.1) can be written in the form 

     
0 0

0
lim lim
x x x x

f x f x f x
 

  .           (5.2) 
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We will give the second definition of the continuity of a function, based on 

the concept of increments of an argument and a function. Let the numbers 
0

x  and 

x  belong to the definition domain of the function  y f x . 

Definition. The difference 
0

x x  is called the increment of the argument 

at the point 
0

x  and is denoted by x : 
0

x x x   . The difference of the corres-

ponding values of the function    0
f x f x  is called the increment of the 

function at the point 
0

x  and is denoted by y : 

       0 0 0
y f f x f x f x x f x         . 

Obviously, the increment x  can be a positive or negative number. Let’s 

write equality (5.1) in the new notation, for which we will transfer the value 

 0
f x  in it to the left part and enter it under the limit sign. Since the conditions 

0
x x  and 

0
0x x   are the same, equality (5.1) takes the form 

    
0

0
0

lim 0
x x

f x f x
 

     or   
0

lim 0
x

y
 

  .    (5.3) 

Equality (5.3) makes it possible to formulate the following definition of the 

continuity of a function. 

Second definition of the continuity. A function  y f x  defined at a 

point 
0

x  and some of its neighborhood is called continuous at a point 
0

x  if its in-

crement at this point is an infinitesimally small function at 0x  . 

The concept of one-sided continuity is often encountered. 

Definition of continuity on the left. A function  y f x  is called conti-

nuous at a point 
0

x  on the left if it is defined on the half-interval  0 0
;x x , where 

0  , and is a valid equality 

   
0

0
0

lim 0
x x

f x f x
 

  . 

Definition of continuity on the right. A function  y f x  is said to be 

continuous at a point 
0

x  on the right if the function is defined on the half-interval 

0 0
;x x  , where 0  , and is a valid equality 

   
0

0
0

lim 0
x x

f x f x
 

  . 

Using concepts and formulas (5.2), it is possible to formulate the third 

definition of continuity. 

A function  y f x  will be continuous at a point 
0

x  if and only if it is de-

fined in some neighborhood of a point 
0

x  and the following holds equality: 
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0 0

0
0 0

lim lim
x x x x

f x f x f x
   

  .     (5.4) 

If at least one of these conditions is not fulfilled, then the function is called 

discontinuous at the point 
0

x , and the point itself 
0

x  is called the point of discon-

tinuity of the function. 

Definition. A function  y f x  is called continuous on an interval ( , )a b  if 

it is continuous at every point of this interval. 

A function  y f x  is continuous on the segment [ , ]a b , if it is continuous 

at every point of the interval ( , )a b  and at point x a  is continuous on the right 

(that is,    
0

lim
x a

f x f a
 

 ) and at point x b  is continuous on the left (that is, 

   
0

lim
x b

f x f b
 

 ). 

Let us give a number of properties that are satisfied by functions that are 

continuous on a line segment. Each of these properties has an important indepen-

dent meaning: 

1) if the function  y f x  is continuous on the segment [ , ]a b , then it 

acquires the largest and smallest values on it; 

2) if the function  y f x  is continuous on the segment [ , ]a b  and acquires 

values of different signs at its ends, then in the interval ( , )a b  there is at least one 

such point c at which the function is zero:   0f c  ; 

3) if the function  y f x  is continuous on the segment [ , ]a b  and m is its 

smallest value, and M is the largest, then for any number   contained between m 

and M, there will be such an argument value [ , ]c a b  that  f c  ; 

4) if two functions  f x  and  g x are defined in the domain X and are conti-

nuous at the point 
0

x X , then the such functions are also continuous at this point 

   f x g x ,     f x g x ,     /f x g x ,  (  0
0g x  ). 

 

5.2. Classification of breakpoints. Examples of the study  

of functions for continuity 

 

The following types of breaks are distinguished. 

Definition of discontinuity of the first kind. If there are finite one-sided 

boundaries for the function  y f x  at a point 
0

x  

   
0

0
0

lim 0
x x

f x f x
 

     and      
0

0
0

lim 0
x x

f x f x
 

  , 



66 

 

moreover, not all numbers  0
0f x  ,  0

0f x  ,  0
f x  are equal to each other, 

then a discontinuity at a point 
0

x  is called a discontinuity of the first kind, and a 

point 
0

x  is a discontinuity point of the first kind. 

The value    
0 00 0

lim lim
x x x x

f x f x
   

   is called the jump of the function. 

Definition of removable discontinuity. If      0 0 0
0 0f x f x f x    , 

then the discontinuity at the point 
0

x  is called removable, and the point 
0

x  is 

called the point of removable discontinuity. 

Therefore, a removable rupture is a partial case of a rupture of the first kind. 

In the case of a removable discontinuity, it is enough to determine the function at 

only one point 
0

x , putting    0 0
0f x f x  , to obtain a function continuous at 

the point 
0

x . 

Definition of discontinuity of the second kind. If at least one of the one-

sided boundaries in formula (5.4) does not exist or is equal to infinity, then the 

discontinuity at a point 
0

x  is called a discontinuity of the second kind, and the-

point itself 
0

x  is a discontinuity point of the second kind. 

Example 5.1. Check the continuity of the function 

, 2;

( ) 2 , 2 1;

1 , 1.
2

x

x x

f x x

x



  


   


  

The solution. The graph of the specified function is shown in Fig. 5.1. 

 

Fig. 5.1. Graph of the function  f x  
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Let’s examine the function at the points suspected of discontinuity, namely, 

at the points 2x    and 1x  , where the branches of the function change their 

analytical expression. Let’s calculate the corresponding one-sided boundaries: 

2 0 2 0 2 0 2 0

lim ( ) lim ( ) 2; lim ( ) lim 2 4;
x

x x x x

f x x f x


           

    
 

1 0 1 0 1 0 1 0

1 1 1 1lim ( ) lim 2 ; lim ( ) lim ; (1)
2 2 2 2

x

x x x x

f x f x f


       

     . 

Therefore, 2x    is the point of discontinuity of the first kind, and 1x   is 

the point of continuity (Fig. 5.1). The jump of the function at a point 2x    is: 

2 4 2   . 

Example 5.2. Check the continuity of the function  
1

13 xy x  . 

The solution. It is obvious that is the point 1x    of discontinuity of the 

given function. To determine the nature of the discontinuity, we will find the lim-

its of the function at this point left and right: 

1 1

1 1

1 0 1 0 1 0 1 0

lim ( ) lim 3 0; lim ( ) lim 3 .x x

x x x x

y x y x 

           

      

 

Fig. 5.2. Graph of the function  
1

13 xy x   

Therefore, the point 1x    is a discontinuity point of the second kind. The 

graph of the specified function is shown in Fig. 5.2. Here, the straight line 1x    

is the vertical asymptote of the curve. 

Since lim ( ) 1
x

y x
 

 , the straight line 1y   is a horizontal asymptote. 

Example 5.3. Check the continuity of the function  
2

1

( 1)
2

x
y x




 . 

The solution. It is obvious that the point of discontinuity of the given func-

tion is the point 1x  , since this point does not belong to the domain of the 

 X

 Y

 1
 O

 1y 

 1

1

3  xy

 3
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function. To establish the nature of the discontinuity, we will find the one-sided 

limits of the function at the suspicious point 1x  : 

2 2

1 1

( 1) ( 1)

1 0 1 0 1 0 1 0

lim ( ) lim 2 0; lim ( ) lim 2 0 ; lim ( ) 1
x x

x x x x x

y x y x y x
 

 

         

     . 

The last limit means that the line 1y   is a horizontal asymptote. 

It turned out that the two boundaries at the point 1x   are equal, but the 

function in it is not defined. Therefore, the function has a removable discontinuity 

(Fig. 5.3), which can be removed if the function is determined by its limit value 

0y   at 1x  . 

That is, after redefinition of the given function  y x , a new function 

 
2

1

( 1)
2 , 1;

0, 1

x

new

if xy x

if x





  

 

 

will already be continuous on the entire number line ( ; )x   . On the graph 

(Fig. 5.3), the straight line 1x   is a vertical asymptote, and the point of intersec-

tion of the curve  y x  with the axis O Y  has coordinates (0,1 2)A . 

 

Fig. 5.3. Graph of the function  
2

1

( 1)
2

x
y x




  

 

5.3. Concept and definition of uniformly continuous functions. 

Cantor’s theorem 

 

Definition of a uniformly continuous function. A function ( )f x  is called 

uniformly continuous on an interval  X x  if for an arbitrary number 0   

there exists such a number ( ) 0    depending only on   that for any two points 

x  and x   from the set  X x  that satisfy the condition ( )x x     , the 

inequality ( ) ( )f x f x     holds. 

 X

 Y

 1 O

 1y 
 

2

1

( 1)
2

x
y






 (0,1 2)A
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Remark. The main thing in this definition is that for an arbitrary number 

0   there is such a number ( ) 0    that guarantees the fulfillment of the in-

equality ( ) ( )f x f x     at once for all x  and x   from the set  X x under 

the unique condition ( )x x     . In this case, the number   is dependent   

only on and can be specified before selecting points x  and x  : will be acceptable 

for all x X  at the same time. 

Uniform continuity means that in all parts of the interval X  the same level 

of closeness of two values of the argument is sufficient to achieve a given level of 

closeness of the corresponding values of the function. 

Note that in a closed interval (segment [ ; ]a b ), any continuous function will 

always be uniformly continuous in it, which follows from the following theorem, 

which belongs to Cantor (G. Cantor). 

Cantor’s theorem (on uniform continuity of a function continuous on a 

segment). A function  f x  continuous on a segment [ ; ]a b  is uniformly conti-

nuous on that segment. 

Example 5.4. Investigate the uniform continuity of the function 

( ) sinf x x x  on the entire number line . 

The solution. By the definition of uniform continuity for an arbitrary 0    

we have: 

( ) ( ) (sin sin ) sin sin

2 sin cos 2 2 .
2 2 2

f x f x x x x x x x x x

x x x x x x
x x x x x x 

                  

       
             

 

Here we used estimates cos 1
2

x x 
  and sin

2 2

x x x x    
 . 

Therefore, the function ( )f x  is uniformly continuous on the set  under 

the condition 
2

x x


    . 

Example 5.5. Show that the function 
1

( ) sinf x
x

  is continuous and 

bounded on the interval  20,




, but is not uniformly continuous on this interval. 

The solution. The limitation of the given function ( )f x  is obvious. The 

continuity of the composite function ( )f x  at each point of the interval follows 

from the fact that it is a superposition of two functions 
1

u
x

  and siny u conti-

nuous on the corresponding intervals. 
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Let’s choose 1
n

x n   and 2
(2 1)n

x
n

 


, where n  is an arbitrary natural 

number. Then the values of the function at the selected points will be as follows: 

( ) sin 0
n

f x n   ,  (2 1)
( ) sin 1

2n

n
f x


    . 

Therefore, we have: ( ) ( ) 1 ,  (0,1]
n n

f x f x         despite the fact that as the 

number n  increases, the modulus of the difference 1
(2 1)n n

x x
n n 

  


 can be 

arbitrarily small. Here, with 1  , it is impossible to find a number   that would 

be acceptable simultaneously for all points  2, 0,
n n

x x

 


 in the sense of ful-

filling the inequality ( ) ( )
n n

f x f x    , although for each individual value of x  

(due to the continuity of the function), such a number   exists. 

Example 5.6. Investigate for uniform continuity the function 

2
( )

9

x
f x

x



,  [ 2, 2]x   . 

The solution. The function ( )f x  is continuous on the segment [ 2, 2] , and 

therefore, according to Cantor’s theorem, ( )f x  is uniformly continuous on this 

segment. 

Tasks for classroom and independent work 

I. Find the left and right boundaries of the functions ( )f x  at the point 
0

x . 

5.1.   
0

1x  .   5.2.  

5.3.    5.4.  

5.5.     5.6.  

5.7.  

5.8. The function is defined as follows: 

 
2

1, 1;

3 , 1.

x if x
y x

ax if x

 
 

   

At what value of parameter a  will the function be continuous? Construct its 

graph. 

,

21

1
)(

1

1





x

xf .3,
3

2
)(

0



 x

x
xf

.1,
1

1
)(

0





 x

x

x
xf .2,3)(

0

2

1

  xxf x

.2,2)(
0

)2(

1

2




xxf
x

.0,

1

1
)(

01




 x

e

xf

x

.2,
2,

2,12
)(

02









 x

xx

xx
xf
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5.9. The function 
2

1

( 1)

4

1 2
x

y







 is not defined at point 1x  . Can it be de-

termined at a point 1x   so that the new function ( )
new

y x  is continuous at this 

point? Plot the graph of this new function. 

5.10. Investigate the nature of the discontinuity of the function 
1

12
( ) 2

x

y x


  at the point 1x  . Is it possible to determine the function ( )y x  at 

1x   in such a way that the new function ( )
new

y x  turns out to be continuous at 

point 1x  ? 

II. Investigate given functions for continuity and classify their discontinuity 

points. 

5.11. 

1

43 xy  .    5.12. 
1

2

2

1 2 x

y







. 

5.13. 
1

arctgy
x

 .      5.14. 

1

1

2 1

1 2

x

x

y






. 

5.15. 
1

ln
y

x
 .     5.16. 

2 1
cosy

x
 . 

5.17. 
2

1 cos
( )

4

x
y x

x





.   5.18. 

1

1

1

x

x

y

e 





. 

5.19. 
sin( ), 0;

( )
0, 0.

x x x
y x

x

 
 



  5.20. 
cos( 2),  1;

( )
1 , 1.

x x
y x

x x

 
 

 

 

III. Investigate the given functions for continuity and plot their graphs. 

5.21. 
1

xy e


 .        5.22. 
2

1

1 xy e


  . 

5.23.   5.24. 

4 cos ,  ,
3 3

( )

4,      .
3

x x

f x

x

 



  
  

  
 






 

5.25. 
1

lim ,  0
1

n
n

y x
x

 


.   5.26. 
2

lim 1
nn

n

y x


  . 

5.27. 
2

lim
1

nx

nx
n

x x e
y

x





.   5.28. 

ln(1 )
( ) lim

ln(1 )

xt

t
t

e
y x

e





. 

2 ,  ,
2 2

( )

2,  ;
2

x
tg x

f x

x
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IV. The function ( )f x  is not defined at point 0x  . Determine the number 

(0)f  so that ( )f x  is continuous at 0x  . 

5.29. 
3

1 1
( )

1 1

x
f x

x

 


 
.   5.30. 

1
( ) sin sinf x x

x
 . 

5.31. 2
( ) lnf x x x .   5.32. 

1

( ) (1 ) xf x x  . 

V. Check for uniform continuity of the function on the specified interval. 

5.33. ( ) ln ,  (0,1)f x x x  .  5.34. 
sin

( ) ,  (0, )
x

f x x
x

  . 

5.35. ( ) sin ,  [0, )f x x x x   . 5.36. ( ) sin ,  ( , )f x x x    . 

5.37. ( ) arctg ,  ( , )f x x x    . 

5.38.  
1

( ) ,  1) (0,1 10),  2)  1 10,1f x x x
x

   . 

5.39. ( ) ,  1) [1, ),  2)  [0, )f x x x x     . 

5.40. Show that the function ( ) sinf x
x


  is continuous and bounded on the 

interval (0,1) , but is not uniformly continuous on this interval. 

5.41. Will the function 
1

2
y

x



 be uniformly continuous on the interval 

[0, 2) ? And on the interval [0, 2 ] , where  is an arbitrary fixed positive number? 

5.42. Will the function 2
sin( )y x  be uniformly continuous on the interval 

( , )  ? And on the interval ,
6 2

  
 
 

? 

Answers and instructions 

5.1. (1 0) 1,  (1 0) 0f f    .  5.2. (3 0) ,  (3 0)f f      . 

5.3. (1 0) 1,  (1 0) 1f f     .  5.4. (2 0) 0,  (2 0)f f     . 

5.5. (2 0)f    .    5.6. ( 0) 1,  ( 0) 0f f    . 

5.7. (2 0) 3,  (2 0) 4f f    .  5.8. 1a  .    5.9. (1) 0y  . 

5.10. 1x   – breaking point of the 1st kind. 

5.11. 4x  – breakpoint of the 2nd kind. 

5.12. 2x  – breaking point of the 1st kind. 

5.13. 0x  – breaking point of the 1st kind. 

5.14. 0x   – breaking point of the 1st kind. 

5.15. 0x   – point of removable rupture; 1x   – breakpoint of the 2nd kind. 



73 

 

5.16. 0x   – breakpoint of the 2nd kind. 

5.17. 2x   – removable break points. 

5.18. 0,  1x x   – breaking points of the 2nd kind. 

5.19. Continuous.   5.20. 1x   – breaking point of the 1st kind. 

5.21. 0x  – breakpoint of the 2nd kind. 

5.22. 0x  – the point of removable rupture. 

5.23. 2x     – breaking point of the 1st kind.  5.24. Continuous. 

5.25. 1y  , if [0;1)x  ; 1 2y  , if 1x  ; 0y  , if 1x  ; 1x   – breaking 

point of the 1st kind. 

5.26. 1y  , if 1x  ; 
2

y x , if 1x  ; the function is continuous. 

5.27. y x , if 0x  ; 
2

y x
, if 0x  ; the function is continuous. 

5.28. 0y  , if 0x  ; y x , if 0x  ; the function is continuous. 

5.29. (0) 1,5f  .   5.30. (0) 0f  .  5.31. (0) 0f  . 

5.32. (0)f e .   5.33. Is not uniformly continuous. 

5.34. Uniformly continuous. 5.35. Is not uniformly continuous. 

5.36. Uniformly continuous. 5.37. Uniformly continuous. 

5.38. 1) Is not uniformly continuous; 2) uniformly continuous. 

5.39. 1) Uniformly continuous; 2) uniformly continuous. 5.42. No. Yes. 
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Section ІІ. Differential calculus of functions of one variable (FOV) 

 

PRACTICAL LESSON  6 

Derivative. Differentiation rules and a table of derivatives. 

Application of the derivative. Differentiation technique 

 

6.1. The concept of derivative and its different notations. 

Differentiation rules and a table of derivatives 

 

We will briefly state the theoretical provisions related to the subject of this 

practical lesson. 

Definition 6.1. If there is a limit of the ratio of the increment y  of the 

function ( )y f x  to the increment of the argument x , then 0,x   it is called 

the derivative of the function ( )y f x  at a point .x  

The derivative of a function ( )y f x  at a point x  is denoted by one of the 

following symbols: 

y  ;  
dy

dx
;  

df

dx
;  

x
y  ;   f x . 

So, by definition, we have: 

 
   

0 0

lim lim
x x

f x x f xy
f x

x x   

  
  

 
.                         (6.1) 

Let’s formulate the algorithm for finding the derivative according to defini-

tion (6.1). To find the derivative of a function ( )y f x  at some point x , you need: 

a) give the value x  an arbitrary increment x  and find the corresponding 

increment of the function 

   y f x x f x     ; 

b) find a relationship: 

   f x x f xy

x x

  


 
; 

c) find the limit of this ratio: 

   
0 0

lim lim
x x

f x x f xy
y

x x   

  
  

 
. 

If this limit exists, then it is equal to the derivative ( )f x . 
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Differentiation rules  

Let be ( ),  ( )u u x v v x   - differentiable functions, and С – be a constant 

value. We will present the formulas used to find derivatives: 

1. 0C   . 

2. ( )u v u v     . 

3. ( )uv u v uv    . 

4. ( )Cu Cu  . 

5. 
2

,  ( ( ) 0)
u u v uv

v x
v v

   
  

 
. 

Table of derivatives  

In practice, it is often necessary to calculate the derivatives of composite 

functions, therefore, in the given formulas (Table 6.1), instead of the independent 

argument  x, we will consider the dependent argument u, where ( )u x . 

Table 6.1 

1.  in particular   

2.  in particular  

3.  in particular  

4.  5.  

6. 

 

 7.  

8.  9.  

10.  11.  

12. ( )shu chu u   . 13. ( )chu shu u   . 

14. 
2

1
( )thu u

ch u
   . 15. 

2

1
( )сthu u

sh u
    . 

  1
,u u u

 


   
1

,
2

u u
u




2

1 1
.u

u u


 

  
 

  ln ,
u u

a a a u


   .
u u

e e u




1
(log ) ,

ln
a

u u
u a

   
1

ln .u u
u




 sin cos .u u u


  cos sin .u u u


 

 
2

1
tg .

cos
u u

u


  

2

1
ctg .

sin
u u

u


 

 
2

1
arcsin .

1

u u

u






 
2

1
arccos .

1

u u

u


 



 
2

1
arctg .

1
u u

u





 

2

1
arcctg .

1
u u

u
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6.2. Application of the derivative in mechanics and geometry 

 

1. The mechanical content of the derivative. Let the material point move 

in a straight line according to the law ( )S S t , where t   is time and ( )S t  is the 

path traveled by the material point during this time. Then the instantaneous speed 

at a given moment of time is a derivative of the law ( )S S t  of motion of a ma-

terial point in time t : ( )
dS

V S t
dt

  . If the speed becomes zero ( ( ) 0S t  ), then 

the material point stops; if it has a negative sign ( ( ) 0S t  ), then the point moves 

in the opposite direction. This is the mechanical content of the derivative. 

Remark. For the time derivative, a special notation is used in the form of a 

dot above the function – ( )S t . 

Generalizing this concept to other physical processes, we can say: if a func-

tion ( )y f x  describes some physical process, then the derivative ( )y f x   is 

the rate of change of this process. In other words, no matter what physical mean-

ing the functional dependence ( )y f x  reflects, the ratio of increments 
y

x




 can 

be considered as the average rate of change of the function y  relative to the ar-

gument x , and the derivative ( )f x  – as the instantaneous rate of change of the 

function. For example, it is known that the volume V  of a body depends on the 

temperature T  of the external environment in which this body is located, that is, 

there is a dependence ( )V V T . Then the derivative ( )V T  determines the instan-

taneous rate of change of the volume of the body depending on the change in 

temperature of the surrounding medium. This is the physical meaning of the de-

rivative. 

An example of the application of the derivative in mechanics. A material 

point moves in a straight line along the horizontal axis according to the law 
2

( ) ( 1)
t

f t t e


  . Find all moments of time at which the point stops. 

The solution. The condition of stopping the material point will be fulfilled 

when the instantaneous velocity ( )v t  is equal to zero. Let’s find the derivative of 

the given function: 

2 2
( ) ( ) ( 1) ( 1)

t t
v t f t t e t e

 
       

 
. 

Let’s equate the instantaneous speed to zero 

2

1 2
( ) 0 ( 1) 0 1,

t
v t t e t t


         . 
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Fig. 6.1 shows the graph of the function ( )v t  for illustration. 

0 2 4 6 8 10
1

0.8

0.6

0.4

0.2

0

dy t( )

t
 

Fig. 6.1 

Conclusion: we have only two points in time when a material point has 

stops: an instantaneous stop under the condition 
1

1t   (when the curve ( )f t  has 

an inflection) and a final stop under the condition 
2

t    (when the point finally 

stops). 

2. The geometric content of the derivative. The derivative  0
f x  at some 

point  0 0 0
;M x y  of the curve is equal to the angular coefficient of the tangent to 

the curve ( )y f x  or the tangent of the angle   (Fig. 6.2), which forms the tan-

gent to the curve at this point  0 0 0
;M x y  with the positive direction of the axis

:OX  0
k tg f x   . This is the geometric content of the derivative. 

 

Fig. 6.2 

Let’s find the equation of the tangent to the curve ( )y f x . Since the tan-

gent passes through the point  0 0 0
;M x y  in the direction determined by the angle 

 , then, putting  0
k f x  in the formula  0 0

y y k x x    for a straight line, 

we get: 

   0 0 0
y y f x x x   .                                      (6.2) 

 Y

 X

 C B O

 
0M

 
 A

  xfy 

 0

0 90 CAM
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Equation (6.2) is called the equation of the tangent to the curve ( )y f x  

at the point  0 0 0
;M x y . In particular, if the function at a point  0 0 0

;M x y  has an 

infinite derivative, then the tangent at this point is parallel to the axis O Y , and its 

equation is:
0

x x . 

Example 6.1. Find the tangent to the curve 3
y x  at the point 

0
1x  . 

The solution. Let’s use formula (6.2). To do this, we will find the value of 

the derivative of the function 3
y x  at the point 

0
1x  :  

2

11
3 3

xx
f x x



   . 

Now let’s write the equation of the tangent at the point  0
1; 1M : 

 1 3 1y x    or 3 2y x  . 

Definition 6.2. The normal to the curve ( )y f x  is the straight line pass-

ing through the point of contact  0 0 0
;M x y  perpendicular to the tangent at the 

same point. 

Since the angular coefficients of the tangent 
D

k  and the normal 
N

k  are re-

lated to each other by the corresponding condition of the perpendicularity 

1 0
D N

k k    of two straight lines, the equation of the normal to the curve 

( )y f x  at the point  0 0 0
;M x y  has the form: 

 
 0 0

0

1
y y x x

f x
   


.                                    (6.3) 

Using equation (6.2), you can find the length of the segment 
0

AM  (Fig. 6.2), 

which is called the length of the tangent segment (as the distance between the 

points A  and 
0

M ), and the length of the segment AB , which is called the sub-

tangent (as the distance between the points A  and B ). Similarly, with the help of 

equation (6.3), the length of the segment of the normal 
0

M C  and subnormal 

BC  is found. 

 

6.3. The technique of differentiation of functions by definition. 

Differentiation of a composite function 

 

Let’s consider some examples on the topic of finding the derivative accord-

ing to definition (6.1). 

Example 6.2. Find the derivative of a power function y x


 , where    is 

an arbitrary real number. 
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The solution. We apply the equivalence  1 1z


  ~ z   under the condi-

tion 0z  . As a result, we get: 

 
0 0 0

1 1

lim lim lim
x x x

x

x x xy x
y x

x x x



 



     

 
          

    

1

0

1
lim

x

x

x
x x x

x x

  



 


 



  


. 

So, we got the tabular formula:  
1

x x
 




 . 

Example 6.3. Find the derivative of a function ( ) siny x x . 

The solution. Here we apply the first important limit: 

 
 

0 0

2 sin cos
sin sin 2 2

sin lim lim
x x

x x
x

x x x
x

x x   

    
         

  
   

0 0

sin
2

lim lim cos cos
2

2

x x

x

x
x x

x   

 
 

  
     

. 

So, we got the tabular formula:  sin cosx x

 . The formula is proved simi-

larly  cos sinx x

  . 

Example 6.4. Find the derivative of an exponential function 
x

y a ( 0, 1a a  ). 

The solution. Let’s use equivalence 1
z

a  ~ lnz a  under the condition 0z  : 

 
0 0 0

1 ln
lim lim lim ln .

x x x x

x x x x

x x x

a a a x a
a a a a a

x x x

 

     

   
   

    

So, we got the tabular formula:   ln
x x

a a a

 . The tabular formula is 

proved similarly  
log

log a
a

e
x

x


 . 

Consider the differentiation of the product of two functions. 

Example 6.5. Find the derivative of a function:  2
1 arcsin .y x x   
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The solution. Using the rule of differentiation of the product of functions 

 uv u v uv


   , we get: 

         
1

2 2 2 2 21 arcsin 1 arcsin 2 arcsin 1 1y x x x x x x x x
 

          
 

2
1 2 arcsin .x x x    

Consider the differentiation of the fractions u v  of two functions. 

Example 6.6. Using the rule of differentiation of fractions of functions 

2

u u v uv

v v


  

 
 

, we obtain for the functions tg x  and ctg x : 

 
     

2 2 2

sin cos sin cos cos cos sin sinsin 1
tg ;

cos cos cos cos

x x x x x x x xx
x

x x x x

 
    

    
   

 
    2 2

2 2 2

cos sin cos sincos sin cos 1
ctg

sin sin sin sin

x x x xx x x
x

x x x x

 
    

     
 

. 

We will show how to differentiate a composite function. 

Example 6.7. Find the derivative of a function: 5
arctg .y x  

The solution. The given function is composed of: 5
y u , where arctgu x . 

Therefore 

4

4

2 2

1 5 arctg
5

1 1
x u x

x
y y u u

x x
      

 
. 

Example 6.8. Find the derivative of a composite function:   2
( ) ln tgy x x . 

The solution. 

      
2 2 2

2 2 2 2 2

1 1 1 4
ln tg tg .

tg tg( ) cos ( ) sin(2 )

x
x x x

x x x x

  
    
 

 

 

6.4. Differentiation of a parametrically defined function 

and an implicitly defined function. Logarithmic differentiation 

 

Consider the differentiation of parametrically specified functions. 

Example 6.9. Write the equation of the tangent to the cycloid 

 2 sinx t t  ,  2 1 cosy t   at the point  0 0 0
;M x y  corresponding to the 

parameter 
0 2

t  . 
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The solution. Let’s find the coordinates of the point  0 0 0
;M x y  

 0

2

2 sin 2
t

x t t


     ;  0

2

2 1 cos 2.
t

y t


    

Let’s calculate the value of the derivative 
x

y   of 
0

2
t


 : 

 2

2

2 sin
1.

2 1 cos
x t

t

t
y

t







 
   

 
 

Let’s make the equation of the desired tangent: 

  2 1 2y x       or 4 .y x     

Let us consider two examples of differentiation of an implicitly given 

function. 

Example 6.10. Find the derivative y   if  

2 2
( , ) arctg 3 2 2 0F x y x y y x y       . 

The solution. Let’s find the derivative of both parts of the given equation, 

considering y  the function x . As a result, we have: 

2
2 2 3 2 0

1

y
x yy y

y


     


, 

   

 

2

2 2

2 3 11
2 2 2 3

1 3 2 1

x y
y y x y

y y y y

  
       

    
. 

Example 6.11. Find the derivative of the implicit function y if 

2 2 2 .
x y x y
   

The solution. Since  2 2 ln 2
y y

y


  ,    2 2 ln 2 1
x y x y

y
 


   , then after 

differentiating the given equation we get: 

 2 ln 2 2 ln 2 2 ln 2 1
x y x y

y y


         2 2 2 2 .
y x y x y x

y
 

     

Finally we have: 12 2
2 ; 1 2 ; (1 2 ) .

2 2

x y x

y x y x

y x y
y y y



 




        


 

Let’s explain the technique of logarithmic differentiation. 
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Example 6.12. Find the derivative of the function  
453 1 .y x x


   

The solution. This function can be differentiated by the rule of fraction dif-

ferentiation. However, this method is very cumbersome. Let’s apply logarithmic 

differentiation. After logarithmizing the function, we get: 

 
1

ln 4 ln(1 ) 5 ln
3

y x x   . 

After differentiation, we get: 
 

1 4 5 5
.

3 1 3 1

y x

y x x x x

  
    

  
 

And finally we have: 

 
 

4

3 3
5 2 2

15 5 1
ln .

3 (1 ) 3

xx x x
y y y

x x x x x

  
     


 

Another example of a function whose derivative is easier to find by 

logarithmic differentiation is an exponent-power function 

 
 v x

y u x ,                                                 (6.4) 

where ,u v  − given and differentiable functions from x . 

Let’s find the derivative of function (6.4) in the general form: 

ln lny v u ; ln
y u

v u v
y u

 
  ; 1

ln ln
v v vu

y u v u v u u v vu u
u


 

        
 

. 

Therefore, the derivative of the exponential-power function (6.4) is equal to 

the sum of the derivative of the exponential function under the condition that 

u const , and the derivative of the power function under the condition that 

v const : 

  1
ln

v v v
u u u v vu u




    .                                     (6.5) 

Remark. The derivative of the exponential-power function (6.4) can be 

found in another way, using the identity ln ln
.

v
v u v u

u e e   Indeed, after its 

differentiation we will get 

     
ln

ln .
v v u v

u e u v u
  
                                    (6.6) 

Example 6.13. Find the equation of the tangent to the curve
x

x
y x at the 

point x е . 



83 

The solution. To calculate the derivative, we will use logarithmic differen-

tiation: 

   1
ln ( ) ln

x x
x x x x x

y x x x x x x x


    . 

Now we will separately find the derivative of the function x
x : 

( ) ( ln ) (ln 1)
x x x

x x x x x x    . 

Thus, the derivative y   of the given function will have the following form: 

 1 1
(ln 1) ln (ln 1) ln

x x
x x x x x

y x x x x x x x x
x

   
       

 
. 

Now let’s calculate the value of the derivative y   at the point x е : 

1
( ) 2

e
e e

y e e
e

  
   

 
. 

The equation of the desired tangent has the following form: 

 
1

2
e e

e e e
y e e x e

e

  
     

 
. 

Example 6.14. Find the derivative y   of the implicit function: y x
x y . 

The solution. The given function is an exponential-power function, which is 

specified in an implicit form. Let’s apply logarithmic differentiation. As a result, 

we get: 

ln ln ln ln
y xy

y x x y y x y
x y


     

 
2

( ln ) ln 1
ln ln .

( ln ) ln 1

y x y y y xyxy x y y
y x x y x x x y

  
         

  

6.5. Research on differentiability of functions 

Example 6.15. Find the derivative y   of the function y x , 0x  . 

The solution. Using the definition of the derivative for a given function, we 

write the expressions for the right and left derivatives, respectively. 

Let 0x   , then the right derivative has the form: 

0 0

(0 ) (0)
lim lim 1
x x

y x y x
y

x x   

   
   

 
. 

Let 0x   , then the left derivative has the form: 

0 0

(0 ) (0) (0 ) 0
lim lim
x x

y x y y x
y x z

x x   

     
       

 
. 
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0 0 0

0(0 )
lim lim lim 1
z z x

zy z z

z z z        

   
    

  
. 

At the end of the solution, we note that this function does not have a deriva-

tive at the point 0x  , since it is a “corner” point. 

Example 6.16. Find the derivative  y x  of a function: 

2
1 1

( ) , 0

0, 0

x

y x if xx

if x

  


 




. 

Is the given function ( )y x  continuous? Is its derivative  y x  a continuous func-

tion? 

The solution. In this example, we will also use the definition of a derivative. 

First, we will find the derivative of the given function under the condition that 

0x  . 

Therefore, if 0x  , then: 

2 2

2 2

1 1 1 1

1

x x

x x x


    

 
   

. 

Now, by definition, we will find the derivative at a special point 0x  : 
2

0 0

1 1
0

( ) 0 1
lim lim

2x x

x

y x xy
x x 

 



    . 

Let’s determine whether the given function is continuous at a given point 

0x  . Let’s find the limit of the upper branch of the function at a point 0x  : 

2

0

1 1
lim 0
x

x

x

 
 . 

We see that the value of the limit coincides with the value of the function at 

the point beyond the second branch. Hence we conclude that the given function is 

continuous at the point 0x  . Now we will find out whether the derivative of the 

given function is continuous at the same point. For this, it is necessary to find the 

limit of the derivative for the first branch at the point 0x  , i.e.: 

2
2

2 2 2 20 0

1

1 1 12lim lim
21 1

x x

x
x

x x x x
 

 
 

 

. 

Again, we can state that the derivative of the given function is also a conti-

nuous function, since this limit coincides with the value of the derivative at the 

point 0x  . 
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Conclusion: we have only two points in time when a material point has 

stops: an instantaneous stop under the condition 
1

1t   (when the curve ( )f t  has 

an inflection) and a final stop under the condition 
2

t    (when the point finally 

stops). 

 

 

Tasks for classroom and independent work 

 

6.1. Find the left and right derivatives of the function ( )
x

f x e


  at the 

point 0x  . Is the function ( )f x  continuous at this point? Is it differentiable at 

this point? 

6.2. Prove by definition the formula for differentiation of inverse trigono-

metric functions ( ) arcsiny x x , ( ) arctgy x x . 

I. Find derivatives of functions: 

6.3. 
2

arctg (cos ) arcsin(ln(sin ))y x x  . 6.4. 
3

3
3

1

1

x
y

x





. 

6.5. 2 2
sin(cos ) cos(sin )y x x  .  6.6. 

2

cos

2 sin

x
y

x
 . 

6.7. 
sin cos

cos sin

x x x
y

x x x





.    6.8. 

2 83 34y ctg x ctg x  . 

6.9. 1
2

x x
y e ctg

 
  

 
.    6.10. 2 3

ln(ln (ln ))y x . 

6.11. 

2

2

1 1
ln

4 1

x
y

x





.    6.12. 21

ln sin
2

y ctg x x  . 

6.13. ln tg cos ln(tgx)
2

x
y x

 
   

 
.  6.14. 

2
arccos 1y x  . 

6.15. 
1

arctg
1

x
y

x

 
  

 
.   6.16. 

2

2

ln
arctg 1

1

x
y x

x

  



. 

6.17. 
2

arcsin 1 1
ln

2 11

x x
y

xx


 



.  6.18. 
2

ln( 1 )
x x

y e e   . 

6.19. 
2

1
ln( )

2
y chx

ch x
  .  6.20. arctg(th )y x . 

6.21. Find  2
y  , if 21( ) tg (sin ) ln(cos(sin ))

2
y x x x  . 
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6.22. Find (1)y  , if ( ) ( 1) arcsin
1

x
y x x x

x
  


. 

II. Find derivatives 
x

y   of functions given implicitly: 

6.23. 
2 2 2

3 3 3x y a  .   6.24. 
2 2

arctg ln
y

x y
x
  . 

6.25. arcsin( )xy x y  .            6.26. lg( ) 10
x

x y
y

   . 

 6.27. What is the essence of logarithmic differentiation? Prove the formu-

las by the method of logarithmic differentiation:   1p p
x px


  and   ln

x x
a a a


 . 

 6.28. Differentiate the function log
u

y v , where ( )u u x  and ( )v v x . 

Using the results of this task, find the equation of the tangent to the curve 

sin
log (cos )

x
y x  at the point 

4
x


 . 

III. Find the derivative of a function ( )y f x  by logarithmic differentiation: 

  6.29. ,  0
x

y x x  .   6.30. 
1

x

x
y

x

 
  

 
. 

  6.31. (cos 2 )
tgx

y x .   6.32.
 

cos 5
(sin 8 )

x
y x . 

  6.33. 
sin 4 2

7 2 6

( 6 10)

1
arctg sh 2

x
e x x

y

x
x

 


 
 

 

.           6.34. 
2

3
2

3

1 (3 )

x x
y

x x




 
. 

  IV. Find the derivative 
x

y   of a function ( )y f x  given parametrically: 

  6.35. 
2 2

sin ,  cosx t y t  .   6.36. ch ,  shx a t y b t  . 

  6.37. 
2

3
,  

t
x e y t  .    6.38. ln sin ,  ln cosx t t y t t    . 

 6.39. Let ( ) sin ,  ( ) cos
t t

x t e t y t e t


  . Make sure that 
2

(1)
x

y e  . 

 6.40. Let 
2

2
ln 4 0

y
x y x   . Make sure that ( )

2

y
y e

e
   . 

 6.41. At what angles do the lines intersect 
2

y x  and 2
y x  at their inter-

section points? 

 6.42. At what angles do the lines 3 x
y e


  and 

2
2 1x

y e


  intersect? 

V. Write the equation of the tangent and the normal to the curves at the given 

points: 

 6.43. 
2 2

0
1,  (6;  6, 4)

100 64

x y
M  . 6.44. 

0
ln 1,  (1;  1)xy y M  . 
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6.45. 
2 3

0
2 ,  3 ,  0x t t y t t t     . 6.46. 

2 2

03 3

2 2
,  ,  1

1 1

t t t t
x y t

t t

 
  

 
. 

6.47. Write the equation of the normal to the hyperbola 
1

2

x
y

x





 parallel to 

the line 9 3 2 0x y   . 

6.48. To the line 4
6 6y x x   , write the equation of the tangent perpendi-

cular to the line 2 4 7 0x y   . 

6.49. Investigate the continuity and differentiability of the function 

 

3 1
sin ,  if 0;

( )

0,  if 0 .

x x
f x x

x




 

 

 

 6.50. Select the coefficients   and   so that the function 

2

0

0

,  if ;
( )

,  if 

x x x
f x

x x x 

 
 

 

 

was differentiable at a point 
0

x . 

6.51. Find the derivative y   of the function 2y x x   , 0, 2x x  . 

6.52. Find the derivative  y x  of a function: 

3

2

1 2 1

( ) , 0;

0, 0.

x

y x if xx

if x

  


 




 

Is the given function ( )y x  continuous? Is its derivative  y x  a continuous func-

tion at the point 0x  ? 

 

Answers and instructions 

 

6.1. The function is continuous, but not differentiable. 

6.3. 
2 2

2 sin arctg(cos ) ctg

1 cos 2 (1 ln (sin )) arcsin(ln(sin ))

x x x

x x x


 

 
.   

6.4. 
2 3

3
6 3

2 1
,

1 1

x x

x x



 
1x  .                              6.5. sin 2 cos(cos 2 )x x  .   

6.6. 

2

3

1 cos
,  ,  .

2 sin

x
x k k

x



                  6.7. 

2

2
(cos sin )

x

x x x
.   
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6.8. 
4 3

8
,  ,  

3 sin
x k k

x ctgx
  .       6.9. 

2

(sin cos )
,  2 ,  

2 sin
2

x
e x x

x k k
x




  .   

6.10. 
3

6
,

ln ln(ln )x x x
x e .                    6.11. 

4
,  1

1

x
x

x



.   

6.12. 3
,  0 2 ,  ctg x x k k      .  6.13. sin ln ,  0 2 2 ,  x tgx x k k      .  

6.14. 
2

sgn
,  0< 1

1

x
x

x





.                    6.15. 
2

1
,

1 x
1x  .   

6.16. 
2 3 2

ln
,  1

( 1)

x x
x

x



.                       6.17. 

2 3 2

arcsin
,  1

(1 )

x x
x

x



.    6.18. 

2
1

x

x

e

e

.   

6.19. 3
th x .                                         6.20. 

1

2ch x
.                      6.21. 0.   

6.22. 1 4 .                                     6.23. 3
y

x
 .                      6.24. 

x y

x y




.   

6.25. 
2

2

1 ( ) 1

1 1 ( )

y x y

x x y

  

  

.                      6.26. 
2

2

( ) ln 10

( ) ln 10

y x y y

y x x y

 

 
.   

6.28. The equation of the tangent to the curve: 
4

1
ln 2 4

y x
 

   
 

.  

6.29. 

1
2

(1 ln ),  0xx x x


  .                    6.30. 
1

ln
1 1 1

x

x x

x x x

   
   

     
. 

6.31. 1 2 2
(cos 2 ) (cos 2 ln cos 2 sec 4 sin )

tgx
x x x x x


   . 

6.32. cos 5 1
(sin 8 ) (8 cos 5 cos 8 5 sin 8 sin 5 ln sin 8 )

x
x x x x x x


    . 

6.33. 
sin 4 2 3

2 2
7 2 6

2 ( 6 10) 3 9 1
2 cos 4 6 ch 2

17 6 10 1
arctg sh 2

x
e x x x

x x
x x x

x
x

   
   

     
 

 

. 

6.34. 
2 3

2

54 36 4 2
,  0;1; 3

3 (1 )(9 )

x x x
x

x x x

  
 

 
. 6.35. 1 .                       6.36. cth ,  0

b
t t

a
 . 

6.37. 
23

2

t
te

 .                                    6.38. 
1

1

tgt

ctgt




. 

6.41. 
3

;  arctg 37
2 4


 .                     6.42. 

3

1 6
arctg

1 12

e

e


 
  

  
, 

3

2 3
arctg

1 6

e

e


 
  

  
 

. 

6.43. 3 5 50 0,  5 3 10,8 0x y x y      .   
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6.45. 3 2 0,  2 3 0x y x y    .   

6.46. 3 4 0,  3 3 0x y x y      .    

6.47. 3 3 0,  3 13 0x y x y      .        6.48. 2 3 0x y   .   

6.49. The function is continuous and differentiable.   

6.50. 2

0 0
2 ,  .x x                            6.51. 

2, 0;

( ) 0, 0 2;

2, 2.

if x

y x if x

if x

 


   

 

 

6.52. 

3 3

3 3

2 1 2 2

( ) , 0;1 2

1, 0.

x x

y x if xx x

if x

   


   




 Yes, both functions ( )y x  and  y x  

are continuous at the point 0x  . 



90 
 

PRACTICAL LESSON  7 

The concept of differential. 

Application of the differential in approximate calculations. 

Derivatives and differentials of higher orders 

 

We will briefly state the theoretical provisions related to the subject of this 

practical lesson. 

 

7.1. The concept of differential 

 

Definition 7.1. The differential  of a function  at a point  is 

the main, linear relative to , part of the increment of the function  

at this point: 

.                                             (7.1) 

If , then , therefore , that is, the differential 

 of the independent variable  coincides with its increment . Therefore, 

formula (7.1) can be written as follows: 

.                                                      (7.2) 

Formula (7.2) allows you to consider the derivative  as the ratio of 

the differential of the function to the differential of the independent variable 

(G. F. A. Leibnitz): 

. 

 

7.2. The geometric content of the differential 

 

The geometric content of the differential can be understood from Fig. 7.1. 

The following relations take place: 

. 

Thus, the differential of the function  at the given values  and 

 is equal to the increment of the ordinate of the tangent dy  to the curve 

 at a point  on the interval . At the same time, the increment of the 

function  is equal to the increment of the ordinate of the curve. For  

specially chosen large scale. 

dy  y f x x

x  y f x

 dy f x x 

y x 1y x   dy dx x  

dx x x

 dy f x dx

 f x

 
dy

f x
dx

 

   ;BD y BC M B tg f x x f x dx dy         

 y f x x

x

 y f x x x

y x
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Fig. 7.1 

Therefore, replacing the increment of the function with its differential 

geometrically means replacing the increment of the function  (segment ) 

on the interval  with the increment of the ordinate of the tangent  

(segment ) on the same interval. Naturally, such a replacement makes sense 

only for sufficiently small values  The error we make when replacing  

with , is equal to the length of the segment . In Fig. 7.1 is marked: 

the increment of the function , the increment of the ordinate  of the 

tangent drawn at the point . 

 

7.3. The mechanical content of the differential 

 

Let’s explain the mechanical content of the differential. Let the material point 

move in a straight line according to the well-known law , where  is 

a function differentiable over some interval, and  – is time. Then the differential 

 of this function at fixed values of  and  – is the path that a 

material point would have traveled over time  if it had moved in a straight line 

and uniformly at a constant speed . It is obvious that the actual path  

in the case of non-uniform movement, in contrast to the differential , is not a 

linear function of time  and therefore differs from the path . However, if the 

time interval  is small enough, the speed of movement does not have time to 

change significantly, and therefore the movement of the point during the time 

interval from  to  is almost uniform. 

 

 

 

y BD

 ;x x dy

BC

.x y

dy C D BD 

y BC  dy

 ;M x y

 S S t  S t 

t

 dS S t t  t t

t

 V S t S

dS

t dS

t

t t t 

 Y

  yxM ;

 

 

 

D

P

P

 x  x x 

 
C

Q

 
B

N

  xfy 

 yy 

 

 

y

 

 

dy

 

 

y

 

 

O  X

Fig. 7.1 



92 
 

7.4. The properties of the differential 
 

Let  and  – be differentiable functions from , С const , then 

we have the following rules for finding differentials: 

1) ; 

2) ; 

3) ; 

4) ; 

5)  

The proof of the above formulas 1) – 5) is carried out similarly to the proof 

of the corresponding formulas for derivatives. 

A particularly important property follows from the rule of differentiation of 

a composite function. Let  is a composite function with an 

intermediate argument  and a final argument , and functions , 

 differentiable at the points  and . Then there is a derivative , 

and therefore a differential 

.                                      (7.3) 

Comparing formulas (7.2) and (7.3), we can conclude that the first differential 

of a function  is determined by the same formula regardless of whether a 

variable  is an independent variable or a function of another variable. This property 

of the differential is called invariance of the form of the first differential. 

Example 7.1. Find the tangent to the curve ( ) 1 cos     at the point 
4


  . 

The solution. Let us recall the formulas of the connection between the 

coordinates of the polar and Cartesian systems. 

( ) sin ;

( ) cos .

y

x

  

  






 

We use the formula (7.3). First, we find the derivative  y x  as a ratio of 

differentials: 

 
[ ( ) sin ] [ ( ) sin ( ) cos ]

[ ( ) cos ] [ ( ) cos ( ) sin ]

dy d d
y x

dx d d

         

         

 
    

 
 

2 2
sin cos cos cos cos 2

sin cos sin sin cos sin sin 2

    

      

   
  
   

. 

 u x  v x x

0dC 

 d Cu Cdu

 d u v du dv  

 d uv vdu udv 

2
, 0 .

u vdu udv
d v

v v

 
  

 

    y f x f t 

 x t t  f x

 t x t
t x t

y y x  

t x t x
dy y dt y x dt y dx     

 y f x

x
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Let’s calculate its value at a point 
4


  : 

 
4

4

2
0

cos cos 2 12 1 2
sin sin 2 2 2 1

1
2

y x 





 

 






        
 



. 

Now it is possible to write down the equation of the tangent, having 

previously found the coordinates of its point of contact: 
0 0

1 1

22
x y   : 

   0 0 0
y y y x x x   

   
1 1 1 1 1

1 2 1 2 1
2 22 2 2

y x y x
    

              
    

. 

 

7.5. Application of the first differential  

in approximate calculations 
 

For small  increments  the function  at a point  can be 

approximately replaced by the differential  at that point: . Substitute 

here the corresponding expressions for  and , as a result we get: 

.                               (7.4) 

We will show how formula (7.4) is used in approximate calculations. 

Example 7.2. Prove that the formula is valid for small values ,  

and for even numbers : 
 
( ). 

The solution. Consider the function ,  for even 

numbers . Let’s find the derivative  and the desired equality 

follows from formula (7.4). In particular, if  then
  

. 

Based on the found formula, we will approximately calculate the given 

expressions: 

a) 
0, 06

1, 06 1 0, 06 1 1, 03
2

     ; 

b) 
2 2 1

142 144 2 144 1 12 1 12 1 11, 917
144 144 144

   
            

   
 

x y  y f x x

dy y dy 

y dy

     f x x f x f x x    

x 0x 

n
1

n n

n n

x
x x x

n x



    2n 

  n
f x x  0;x  

n  
1

1

n n
f x

n x


 

1x  1 1
n

x
x

n
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Example 7.3. Calculate approximately . 

The solution. Importantly! In such examples, angles should be considered 

in radians. 

Let
 

, then by formula (7.4) we have 

; 

 

Because , then 

0, 02 0, 04
arcsin 0, 48 arcsin 0,5 0,524 0, 023 0,501

61 0, 25 3


      


. 

Example 7.4. Calculate approximately . 

The solution. Let , then by formula (7.4) we have: 

; 

 

In our case, we have: , . Let’s substitute these 

values in the above formula. As a result, we get: 

 

 

7.6. Derivatives and differentials of higher orders 

 

Definition 7.2. The order derivative of a function  is called 

the first derivative, if it exists, of the order derivative: 

.       (7.5) 

Example 7.5. Find the fourth-order derivative for the function 

. 

The solution. According to formula (7.5), we have: 

 

Example 7.6. Find the order derivative of the function . 

The solution. . 

 arcsin 0, 48

  arcsinf x x

   arcsin arcsin arcsinx x x x x


    

 
2

arcsin arcsin .
1

x
x x x

x


   



0, 5, 0, 02x x   

 arctg 1, 05

  arctgf x x

   arctg arctg arctgx x x x x


    

 
2

arctg arctg .
1

x
x x x

x


   



1, 0, 05x x   arctg1
4



 
0, 05

arctg 1, 05 0,8104.
4 2


  

n   y f x

 1n  

 
 

 
 

 
  

1

11

1
, ,

n n

n n nn

n n

d y d d y
y y або f x f x або

dx dx dx







  
    

 

5 3 2
6 3 1y x x x   

 44 2 3 2
5 18 6 , 20 36 6, 60 36, 120 .y x x x y x x y x y x          

n 
kx

y e

 2 3
, , , ,

nkx kx kx n kx
y ke y k e y k e y k e     
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Example 7.7. Find the 11-order derivative of the function arctgy x . 

The solution. First, let’s make the following transformations (here i is an 

imaginary unit): 

 1 1

2 2

1 1 1 1 1 1
(arctg ) (1 ) (1 )

1 1 2 1 1 2
y x x іz z z

x z z z

  
            

    
. 

Now we can simply find the tenth-order derivatives for each term in 

parentheses: 

1 (10 )

11

10!
[(1 ) ]

(1 )
z

z


 


, 

1 (10 )

11

10!
[(1 ) ]

(1 )
z

z


 


. 

Let’s return to the old variable and write down the differentiation result: 

11 11

(11)

11 11 2 11

10! 1 1 10! [(1 ) (1 ) ]

2 2 (1 )
1 1

ix ix
у

xx x

i i

 
 

  
    
     

     
    

. 

After opening the brackets, we will get the final result: 

10 8 6 4 2

(11)

2 11

11 165 462 330 55 1
10!

(1 )

x x x x x
у

x

    
 


. 

 

7.7. The Leibnitz’s formula 

 

The Leibnitz’s formula is used to find derivatives of higher orders from the 

product of two differentiable functions. 

Theorem. Let the functions  and  have derivatives up to and 

including the th order at the point , then the following formula holds: 

,                                          (7.6) 

where – binomial coefficients. 

Formula (7.6) is called the Leibnitz’s formula. 

Example 7.8. Find the third derivative of the product 
2

( )
x

y x x e . 

The solution. According to formula (7.6), we have: 

( )u x ( )v x

n  x

 
( ) ( ) ( )

0

n
n k k n k

n
k

u v C u v




  

! ( 1) ( 2) ( 1)

!( )! !

k

n

n n n n n k
C

k n k k
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3

2 2 ( ) (3 ) 2 1 2 3 2

3 3 3 3

0

( ) ( ) 2 2 0 ( 6 6)
x k k x k x x x x x

k

x e C x e x e C x e C e C e e x x





              . 

So, we have: 

 2 2
( ) ( 6 6)

x x
y x x e e x x


     . 

Example 7.9. Find the value of the third derivative of the function 
3 2

( ) ( 2 1) sin 2y x x x x x     at a point 0x  . 

The solution. According to formula (7.6), we have: 

 
3

3 2 3 2 ( ) (3 )

3

0

( 2 1) sin 2 ( 2 1) (sin 2 )
k k k

k

x x x x C x x x x





         

3 2 1 2 2

3 3
( 2 1)( 8 cos 2 ) (3 4 1) ( 4 sin 2 ) (6 4) 2 cos 2x x x x C x x x C x x                 

3 3 2 2

3
6 sin 2 ( 8 16 28 16) cos 2 6(6 8 1) sin 2C x x x x x x x x           . 

So, we have: 
3 2 2

0

(0) ( 8 16 28 16) cos 2 6(6 8 1) sin 2 16
x

y x x x x x x x


          
 

. 

 

7.8. Derivatives of higher orders of  

an implicitly given function 

 

Example 7.10. Find , if . 

The solution. The procedure for finding derivatives of higher orders for 

unspecified functions is similar to the same procedure for finding the derivative of 

the first order. We differentiate the given equality with respect to the variable and 

find the first derivative : 

 

We differentiate by variable the resulting expression for  and find : 

 

. 

 

 

( )y x
2

sinx y y 

( )y x

2
2 cos .

1 cos

x
x y y y y

y
      



x ( )y x ( )y x

 
   

2 2

2
1 cos sin

1 cos sin 1 cos
2 2

1 cos 1 cos

x
y x y

y x y y y
y x

y y

  
   

     
 

 

 

2 2

3

1 cos 2 sin
2

1 cos

y x y

y
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7.9. Derivatives of higher orders  

of a parametrically specified function 

 

Example 7.11. Find , if . 

The solution. We will successively find the first, second, etc.,  

derivatives 

;  ; 

; ... ; . 

Example 7.12. Find 3
( )

x
y x , if cos

2

t
x

 
  

 
,  siny t t  . 

The solution. Let’s find the first derivative by variable x : 

( sin ) 1 cos
4 sin

1 2
sin

cos 2 2
2

t

x

t

t t t t
y

t
t

   
      

         
    
  

. 

Now we will find the second derivative of the variable x : 

2

4 sin 2 cos
2 2

4 ctg
1 2

sin
cos 2 2

2

е

x

t

t t

t
y

t
t


    
     

           
         

    
  

. 

Let’s find the third derivative by variable x : 

3

2

3

2

4 ctg sin
2 42

1
sin sin

cos 2 2 2
2

е

x

t

t t

y
t t

t




    
    
       

    
       

      
  

. 

 

 

 
 

n

y x    
2

ln ,x t t y t t 

 
 

n

y x

 

 

22
2

1
x

y tdy t
y t

dx x t
t


    



 

 

2

2

2

4
4

1

x t
yd y t

t
dx x t

t




  


 

 

3

2

3

8
8

1

x t
yd y t

t
dx x t

t




  


 

 

22
2

1

n n

n

n

d y t
t

dx
t
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7.10. Differentials of higher orders 
 

Definition 7.3. The second differential , or second-order differential, 

is the differential from the first differential: . 

Since  does not depend on , then when differentiating the first 

differential, the factor  can be taken beyond the sign of the derivative, 

therefore 

.        (7.7) 

Definition 7.4. A differential of the th order  is called a differential 

from a differential of the th order: 

.                                  (7.8) 

Remark. Formulas (7.7) – (7.8) are valid only for the case when  the 

independent variable. Indeed, let the composite function , . It is 

known that the first differential has an invariant form, that is, the equality 

 holds both for the case when  is a function of , and for the 

condition that  is an independent variable. 

It turns out that differentials of higher orders do not have an invariant 

property. Let’s show it on the example of a second-order differential. Using the 

rule of product differentiation, we have: 

 

. 

So,  

.                            (7.9) 

Example 7.13. Find , if . 

The solution. Let’s use formula (7.8). 

Since , then . 

Example 7.14. Find  if . 

The solution. Let’s use formula (7.8): 

, 

, 

then 

. 

2
d y

 
2

d y d dy

dx x

dx

           
22

x
d y d dy d f x dx f x dx dx f x dx


     

n 
n

d y

 1n  

    
 

1n nn n
d y d d y f x dx



 

x 

 y f x  x x t

 dy f x dx x t

x

             
2 2 2

d y d f x dx d f x dx f x d dx f x dx f x d x         

     
2 2

f x dx f x x t dt   

     
2 2 2

d y f x dx f x x t dt   

3
d y   cos 3y x x

3 sin 3 , 9 cos 3 , 27 sin 3y x y x y x      
3 3

27 sin 3d y x dx 

2
d y    

3 2
; 1y x x x t t  

         
3 2
; 3 ; 6 ; 2 ; 2f x x f x x f x x x t t x t       

  2dx x t dt tdt 

         
22 22 2 2 2 2 2 4 2 2

6 3 2 6 1 2 6 1 30 36 6d y xdx x dt t tdt t dt t t dt          
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We will get the same result if we immediately exclude the dependent 

variable and use formula (7.7): 

, тому 

 

4 2 2 4 2 2
6(5 6 1); (30 36 6)

tt
y t t d y t t dt       . 

 

Tasks for classroom and independent work 

 

7.1. Find the differential and gain of a function 3
y x  at the point 1x   at

0,1x  . What will be the relative error in case of replacing the gain of a function 

with its differential? 

7.2. Substantiate the general formula for the approximate calculation of 

function values using a differential and prove approximate formulas: 

a) 
1

, 2
n n

nn

x
x x x n

n x



     ; b) ln( ) ln

x
x x x

x


    ; 

c) sin( ) sin cosx x x x x      ;  d) cos( ) cos sinx x x x x      . 

 

I. Find the differential of a function ( )y f x : 

7.3. 
3 6

sin
1

x
y

x



.    7.4. sin cos 2

5
x x

y  . 

 

II. Find the differential of a function ( )y y x , defined implicity: 

7.5. 
2

2y
e x y  .    7.6. 2

2 ln( 2 )xy x y  . 

 

III. Approximately calculate the value of the specified functions (with 

accuracy 
3

10


 ): 

7.7. a) 
0

cos151 ;  b) arctg 0, 98 .  7.8. а) 
0

sin 29 ;  b) ln( 0, 02)e  . 

 

IV. Find the second derivative of the function : 

7.9. 2
( 1) arctgy x x  .   7.10. 2

lny x x . 

 

V. Find (0)y  , if: 

7.11. 3
sin 2

x
y e x .   7.12. 2

ln( 1)
x

y e x  . 

x

   
3 2
; 1y x x x t t  

       
3 2

2 2 5 3
1 ; 3 1 2 6 2 ;

t
y t t y t t t t t      

 xfy 
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VI. Find the second derivative 

2

2

d y

dx
 of the function ( )y f x , defined 

parametrically: 

7.13. 2 3
3 ,  4x t t y t t    .  7.14. cos ,  sinx a t y a t  . 

 

VII. Find , if the function ( )y y x  is implicitly defined: 

7.15. x y
e x y


  .    7.16. 

2 2
,  0

y
arctg

xx y ae a   . 

 

VIII. Find the derivative of the specified order of the function ( )y f x : 

7.17. 

2

(8 )
,  ?

1

x
y y

x
 


   7.18. ( 6 )

ln ,  ?y x x y   

7.19. (100 )
sh ,  ?y x x y    7.20. ( 4 )

cos ,  ?
x

y e x y   

 

IX. Find the derivative of the  order from the function ( )y f x : 

7.21. 
1

(1 )
y

x x



.    7.22. 

3
1

x
y

x



. 

7.23. 2
cosy x .    7.24. sin

x
y e x . 

X. Find ( )
(0)

n
f , if: 

7.25. 
1

( )
(1 2 )(1 )

f x
x x


 

.  7.26. 2
( )

ax
f x x e . 

XI. Find differential of indicated order from the function ( )y f x : 

7.27. 
31

,  ?y d y
x

     7.28. 4
ln ,  ?

x
y e x d y   

XII. Show that the function ( )y f x  satisfied the given differential 

equation: 

7.29. 2
2

x x
y e e  ,  6 11 6 0y y y y      . 

7.30. 2
lny x x ,  

2y y
y

x x x


    . 

7.31. Prove by induction: 

. 

7.32. Prove that the function 
2

1

,  if 0;( )

0,  if  0

xe xf x

x


  

 

 is infinitely 

( )y x

n 

( )

( ) 1 ( 1) 1
( )( 1) !( )

n

n n n nax b
y ad cb n cx d c

cx d
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differentiated at the point 0x  . 

7.33. Prove that 
2 1 ( 1)

(sin ) 2 sin 2
2

n n nn
d x x dx

  
  

 
. 

7.34. Find n
d y , if 

ln
( )

x
y x

x
 . 

XIII. By mathematical induction to prove the formulas: 

7.35. 
( )

( ) ln ,  0
x n x n

a a a a  .  7.36. 
( )

(sin ) sin
2

n n
x x

 
  

 
. 

7.37. ( )
( ) ( 1)( 2) ( 1)

m n m n
x m m m m n x


     . 

7.38. 

1

( ) ( 1) ( 1)!
(ln )

n

n

n

n
x

x


 

 . 

XIV. Calculate derivatives 

7.39. 
2

sin

( )

d x

d x x

 
 
 

.  7.40. 
(tg )

(ctg )

d x

d x
.  7.41. 

4

( sin )

( cos )
x

d x x

d x x 





.  7.42.

4

(sh(tg )

(sin )
x

d x

d x 


. 

7.43. Using Leibnitz’s formula, find the tenth-order derivative of a function 
3

cos 2
x

y e x . Hint. Present the trigonometric function according to Euler’s 

formula: 
2 2

cos 2
2

xi xi
e e

x




 . 

7.44. Prove that the second derivative of the function ( )y x  given 

parametrically by the equations ( ), ( )y y t x x t   is found by the formula: 

2

2 3

( ) ( ) ( ) ( )

( ( ))

d y y t x t y t x t

dx x t

   



. 

 

Answers and instructions 

 

7.3. . 

7.4. . 

7.5. .                7.6. .   

2

9 12 6
sin sin

1 1( 1)

x x
dy dx

x xx


 

sin cos 21
5 (3 cos 3 cos ) ln 5

2

x x
dy x x dx 

2

2

2 1
y

xdx
dy

ye




2 2

3

2

2 1

x x y y
dy dx

x xy
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7.7. ) 0,8747;  )  0, 7754a б .           7.8. )  0, 4849a .   7.9. 
2

2
2 arctg

1

x
x

x



.   

7.10. 2 ln 3y x   .                         7.11. 12.              7.12. 3.                 

7.13. 
2

3

6 18 8

(3 2 )

t t
y

t

 
 


.                   7.14. 

3

1
,  ,  

sin
y t k k

a t
     .   

7.15. 
3

4

(1 )

x y

x y

e

e






.                              7.16. 
2 2

3

2( )
,

( )

x y x y
y y

x y x y

 
  

 
. 

7.17. 
(8 )

9

8!
,  1

(1 )
y x

x
 


.                7.18. 

( 6 )

5

4!
y

x
 . 

7.19. (100 )
100y x shx chx   .          7.20. ( 4 )

4 cos
x

y e x  .   

7.21. 
1 1

( 1) 1
!

(1 )

n

n n
n

x x
 

 
 

 

.   

7.22. 
1

1 3

1 4 (3 5)(3 2 )
( 1) ,  2,  1

3 (1 )

n

n n

n n x
n x

x





  
   


. 

7.23. 1
2 cos(2 2)

n
x n


 .            7.24. 

2
2 sin

4

x n n
e x

 
 

 
.   

7.25.  1!
2 ( 1)

3

n nn 
  .                  7.26. 2

( 1)
n

n n a


 .   

7.27.
3

3

15
,

8
dx

x x
  0x  .             7.28. 

4

2 3 4

4 6 8 6
ln

x
e x dx

x x x x

 
    

 
. 

7.34. 
1

1

! 1
( 1) ln ,  0

n

n n

n

k

n
x dx x

x k




 
   

 
 .   

7.39. 
3

cos sin

2

x x x

x

 
.                  7.40. 

2
tg x , 

2
x n


  .   

7.41. 
4

4








.                                 7.42. 

 
 

3

4

ch tg
2 2 ch 1

cos
x

x

x 


  . 
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PRACTICAL LESSON  8 

The Lhospital–Bernoulli rule.  

Formulas of Taylor and Maclaurin 

 

We will present important theoretical provisions related to the subject of 

this practical lesson. 

 

8.1. The main theorems justifying the application 

of the Lhospital–Bernoulli rule 

 

Theorem 8.1. Let the functions  be defined and differentiable 

around the point , with the possible exception of the point  itself, and 

, 

and in the specified neighborhood . Then if there is a limit of the 

ratio of derivatives , then there is also a limit of the ratio of functions 

 and these limits are equal to each other: 

= .                                         (8.1) 

Remarks 8.1. The theorem is also valid in the case when 
0

x   . Indeed, 

putting 1
x z


 , we have 

. (8.2) 

Remark 8.2. If the derivatives  satisfy the same conditions as 

the functions , then Theorem 8.1 can be applied again. At the same 

time, we get: 

= . 

In general, Theorem 8.1 can be applied until we arrive at the relation of 

( ), ( )f x x

0
x

0
x

   
0 0

lim lim 0
x x x x

f x x
 

 

( ) 0x  

0

( )
lim

( )x x

f x

x





0

( )
lim

( )x x

f x

x

0

( )
lim

( )x x

f x

x 0

( )
lim

( )x x

f x

x





 

 

 

 

  

  

   

   

 

 

11 1 2

1 1 20 0 0
1

lim lim lim lim lim
x z z z x

f zf z f z zf x f x

x xz z z
z

  


  

      



  

   
  

( ), ( )f x x 

( ), ( )f x x

0

( )
lim

( )x x

f x

x 0 0

( ) ( )
lim lim

( ) ( )x x x x

f x f x

x x  
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derivatives , which has a certain limit at , that is, until the 

uncertainty {0 0} disappears. The ratio of functions will have the same limit: 

= .                                       (8.3) 

It is obvious that Theorem 8.1 makes it possible to reveal the uncertainty of 

the form {0 0} . We present the Theorem concerning the disclosure of uncertainty 

of the form { }  . 

Theorem 8.2. Let the functions  be defined and differentiable in 

the neighborhood of a point  and in this neighborhood the boundaries are equal 

, . 

Then if there is a limit of the ratio of derivatives , then there is 

also a limit of the ratio of functions  and these limits are equal to each 

other: 

= .                                    (8.4) 

An effective way of calculating the limits (8.1) – (8.4), substantiated by 

Theorems 8.1 and Theorems 8.2, is called Lhospital’s rule after the 

mathematician (G. F. А. Lhospital) who published it. But this rule was discovered 

independently of Lhospital by Joh. Bernoulli, so the specified rule is also called 

the Lhospital–Bernoulli rule. 

However, one should not think that this rule allows calculating any limits. 

There are limits that cannot be found using this rule. 

Task for IWS: come up with an example of a limit that cannot be 

determined by  Lhospital’s rule. 

Remark 8.3. Lhospital’s rule according to formulas (8.1) – (8.4) is directly 

applied only to reveal uncertainties of the form {0 0} , { }  , which are called 

basic (classical). However, there are also such uncertainties as, for example 

{0 }  , { }   , 0
{ }, {1 }

 , 0
{0 } . Before applying the Lhospital–Bernoulli rule 

to them, they need to be reduced to the main ones. We will show how these 

uncertainties are reduced to the main ones. 

 
 

 
 

n

n

f x

x
0

x x

 

 0

lim
x x

f x

x

 
 

 
 0

lim

n

n
x x

f x

x

( ), ( )f x x

0
x

0 0

lim ( ) lim ( )
x x x x

f x x
 

   ( ) 0x  

 

 0

lim
x x

f x

x





 

 0

lim
x x

f x

x

 

 0

lim
x x

f x

x

 

 0

lim
x x

f x

x
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1. If  and , then the uncertainty of the species 

 can be reduced to the main ones as follows: 

, 

або . 

2. If  and , then the uncertainty of the species 

 reduces to the uncertainty of the species {0 0}  as follows: 

. 

3. If  and , then by means of transformation 

 

the uncertainty of the type  is reduced to the uncertainty  discussed 

above. Uncertainties of the type  and  are revealed similarly. 

Therefore, in order to reveal the uncertainties  

, , they must first be reduced to the main ones and only then apply 

Lhospital’s rule. 

Remark 8.4. When finding, for example, limits of this type 

або 
 

where
 

 
 

 

the Lhospital’s rule should be applied as follows: 

 

 

This remark is also valid in the case of repeated application of Lhospital’s rule. 

0

lim ( ) 0
x x

f x



0

lim ( )
x x

x


 

{0 } 

   
 

 
0 0

0
lim lim

1 0x x x x

f x
f x x

x




 

 
     

 

   
 

 
0 0

lim lim
1x x x x

x
f x x

f x




 

 
     

 

0

lim ( )
x x

f x


 
0

lim ( )
x x

x


 

{ }  

   
   

   

1 1

1 1

x f x
f x x

x f x








 


0

lim ( ) 0
x x

f x



0

lim ( ) 0
x x

x




 
     

0

0

lim ln

lim
x x

x f xx

x x

f x e




  



  

0
{0 } {0 } 

 
0

  1


     
0

0 , , ,     

 1


 
0

0

   

 0

lim
x x

x f x

x





 

 0

lim ,
( )x x

f x

x x 

   
0

lim 0; ,
x x

x A A


    
0

1
lim 0; ,

( )x x

B B
x

      
0 0

lim lim 0,
x x x x

f x x
 

 

   

 
 

 

 

 

 0 0 0 0

lim lim lim lim .
x x x x x x x x

x f x f x f x
x A

x x x




     

 
   

 

 

 

 

 

 

 0 0 0 0

1
lim lim lim lim .

( ) ( )x x x x x x x x

f x f x f x
B

x x x x x       
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8.2. The technique of applying  

the Lhospital‒Bernoulli rule 

 

Examples. Find limits: 

1. 
7 3

0

lim

x x

x

e e

x


.
 

2. . 

3. 
3 3

0

2 sin sin 2
lim

arctg( ) arcsin ( )x

x x

x x

 
 

 

. 

4.  
1

ln

0

lim ctg x

x

x


 . 

5. . 

6. . 

7. . 

The solution. 

1. We have a basic uncertainty {0 0} , therefore: 

=
 

2. Here we have uncertainty . We will reduce it to the basic 

uncertainty of the form {0 0} , after which we will apply Lhospital’s rule: 

=  

3. In this example, we have uncertainty . Let’s reduce it to the 

basic uncertainty of the species {0 0}  and use Lhospital’s rule three times: 

3 3

3 3 3
0 0

3 3

0

2 sin sin 2 2 sin sin 2 0
lim arctg( ) ; lim

arctg( ) arcsin ( ) 0
arcsin ( )

x x

if x then

x x x x
x x

x x x
x x

 



     
       

    

 

 

 
3

lim 3 tg
6x

x
x





 
  

 

tg
2

1

lim tg
4

x

x

x




 
 
 



  
  
  

 
cos

2

lim 2
x

x

x







2
lim ,

n x

x

x e n N






7 3

0

lim

x x

x

e e

x


7 3

0

7 3
lim 4.

1

x x

x

e e






 0  

 
3

lim 3 tg
6x

x
x





 
  

 

 
3 3

2

3 0 6 6
lim lim .

0
ctg sin

6 6

x x

x

x x  
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4. Here we have uncertainty of the form . With the help of known 

transformations, we will reduce the given uncertainty to the basic form { }  , 

after which we will apply Lhospital’s rule: 

 

5. In this example, we have an uncertainty of the form . We will use 

the previous transformation to move to the main uncertainty {0 0} . After that, we 

will apply Lhospital’s rule: 

 

 

6. Here we have uncertainty of the form , then 

 

 

 

7. To reveal this uncertainty in the given example, Lhospital’s rule must be 

applied  times: 

2
0 0

2 cos 2 cos 2 0 2 sin 4 sin 2 0
lim lim

3 0 6 0x x

x x x x

x x 

     
       

   

0

2 cos 8 cos 2
lim 1.

6x

x x



 
 

 
0



   

2

0

0 0

1
tg

sin
lim

1ln ctg
1 lim lim

0 1ln sin cos
ln

0

lim ctg .

x

x x

x
x

x x

xx x x
x

x

x e e e e

 

   

  
   
  

    
     

     

 

 
       

 

 1


 

1

1

ln tg
4

lim
tg

lim tg ln tg ctg2
2 4 2

1

0
lim tg 0

4 0

x

x

x

x
x x x

x

x
e e




  






  
  

  
 

       
        

      



    
         

    

2 2 2

1 1 12

1

ctg cos sin sin
4 4 4 2 2

lim lim lim

sin 2 cos sin sin lim sin
12 2 4 4 2 2
.

x x x

x

x x x x

x x x x x

e e e e e

    

     



  



       
        

       
 

         
            

             

 
0

0

 
 

 

 
1

2 2

ln 2
lim cos ln 2 lim

coscos

2

lim 2 0
x x

x
x x

xx

x

x e e
 








 

 
   

 



 
        

 

 

2 2

2

2
2 2 2

2

2 cos 1 coslim
2 lim 2 lim limcos sin

sin 2 sin 2x
x x x

x x x

x x
x x x x

e e e


  



 



  

 
 

      
                       

 2

2 2

2 cos sincos
2 lim 2 lim

2 2
0

1.
x x

x xx

x

e e e
 

 

    
        

   

n
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. 

8. Find the limit 

 

2 2

2
0

7 2
lim

7 2

x x

x x x





. 

The solution. We have classical uncertainty  0 0 , so we immediately use 

Lhospital’s rule twice: 

 
 

   

2 2

2 2 2 2

2
0 0

7 ln 7 2 ln 2 ln (7 2)

7 2 7 ln 7 2 2 ln 2 2
lim 0 0 lim 7 ln 7 2 ln 2 ln (7 2)

2 7 ln 7 2 ln 2 7 27 2
0

x x

x x x x

x x

x x x xx xx x

x x

if x
 

 

     
     

    


     

2 2

0 0 0

1 (7 ln 7 2 ln 2) 1 1
lim lim lim

ln (7 2) ln (7 2)7 2 7 2 7 ln 7 2 ln 2

x x

x x x x x xx x x

x x

  

   
    

    
. 

When finding this limit, the results of Remark 8.4 were used. 

 

8.3. General theorems related to the representation  

of functions by Taylor and Maclaurin formulas 
 

We present Taylor’s formula for a function  with a residual term in 

Lagrange form (Joseph-Louis Lagrange (1735–1813)): 

  (8.5) 

Remark. This form of the residual term is most often used in applied 

problems and scientific research. The residual term (8.5) in the Lagrange form 

resembles the next, regular term of the Taylor formula, only ( 1) thn    order the 

derivative of the function is calculated not at the point , but at some 

intermediate point 
0 0

( )c x x x    between the points  and . 

The conditions under which a function can be represented by Taylor’s 

formula are stated below in two central theorems. 

 
1 1

2

2 2 2
lim 0 lim lim lim

2 2

n n n

n x

x x xx x x x

x nx n x
x e

e e e

 



   

       
              

       

       
2 32

2 2 2 2 2

1 1 1 2
lim lim lim

2 2 2 2 2

n nn

x x xx x x

n x n n n n n xn x

e e e

 

  

       
        

    

    3

3 2 2

1 2 ! 1 !
lim lim 0 0

2 2 2

n

x n x nx x

n n n x n n

e e



 

     
          

    

 f x

   
 

 
 

 

 
 

 
 

 
 

 

 
 

20 0

0 0 0

1

3 10 0

0 0 0 0

1! 2!

, ( , ).
3! ! 1 !

n n

n n

f x f x
f x f x x x x x

f x f x f c
x x x x x x c x x

n n





 
     


       



0
x

0
x x
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Theorem on Taylor’s local formula. Let: 

1) the function ( )f x  is defined in some neighborhood 
0

x x    of the 

point ; 

2) ( )f x  has in this neighborhood derivatives ( 1)
( ), ( ), , ( )

n
f x f x f x


   up to 

and including the ( 1)n   th order; 

3) there is a n  th order derivative ( )

0
( )

n
f x  at the point . 

Then at this point the local Taylor’s formula is valid (with a residual term in 

Peano form) 

0 0
0

( ) ( ) ( )
n

k n

k
k

f x a x x o x x


    ,                                 (8.6) 

where 
( )

0
( )

, 0,
!

k

k

f x
a k n

k
  ; ( 0 )

( ) ( )f x f x ; 0! 1 . 

Under the conditions specified in the Theorem, this representation of the 

function is unique. 

Theorem on Taylor’s formula on a line segment [ ; ]a b . Let: 

1) the function ( )f x  is defined on some segment [ ; ]a b ; 

2) ( )f x  has continuous derivatives ( )
( ), ( ), , ( )

n
f x f x f x   up to and 

including the n  th order on this segment; 

3) for arbitrary ( ; )x a b  there is a finite derivative of ( 1)n    th order 
( 1)

( )
n

f x
 . 

Then the Taylor’s formula (with the residual term in the form of Lagrange) 

is valid on the segment [ ; ]a b . 

( )

1
0

( )
( ) ( ) ( ),

!

k
n

k

n
k

f a
f x x a R x a x b

k




     ,                    (8.7) 

where 
( 1)

1

1

( ( ))
( ) ( ) , 0 1

( 1)!

n

n

n

f a x a
R x x a

n










 
   


. 

If we put  in Taylor’s formula (8.5), we get a formula called 

Maclaurin’s formula. It will have a simpler form if we use the residual term in the 

Lagrange form: 

( ) ( 1)

2 1(0) (0) (0) ( )
( ) (0)

1! 2! ! ( 1)!

n n

n nf f f f c
f x f x x x x

n n




 

     


,     (8.8) 

where the point c  is contained between the points 0 and ( ). 

 

 

0
x

0
x

0
0x 

x , 0 1c x   
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8.4. The technique of representing functions  

by Taylor‒Maclaurin formulas 

 

Let’s find Maclaurin’s formulas for some elementary functions. 

Example 8.1. Write down  Maclaurin’s formula for the function . 

The solution. Let’s find the value of this function and its derivatives at the 

point : 

 

 

 

…………………………………………………… 

; 

. 

After substituting the values of the found derivatives into Maclaurin’s 

formula, we get: 

,  . 

Example 8.2. Write down Maclaurin’s formula for the function ( )
x

f x e . 

The solution. Let’s find the value of this function and its derivatives at a 

point  

( )
( ) , 1,

k x
f x e k n  . 

Now we can write Maclaurin’s formula for the function ( )
x

f x e : 

2

1
( ) 1

1! 2! ! ( 1)!

n c

nx x x e
f x x

n n


     


. 

 ln 1 x

0x 

     ln 1 0 0;f x x f       
1

0 1;
1

f x f
x

   


 
 

 2

1
0 1 1!;

1
f x f

x
       


 

 
 3

2
0 2 1 2 2!;

1
f x f

x
      



 
 

 

 
 

4 4

4

6
0 6 1 2 3 3!;

1
f x f

x
          



 
 

 

 
 

5 5

5

24
0 24 1 2 3 4 4!;

1
f x f

x
       



 
 

   

 

 
     

1

11 1 !
0 1 1 !

1

n

nn n

n

n
f x f n

x



 
    



 
 

 

 

 

 

1

1

1 11

1 ! 1
( )

1 ( 1) 1

n n n

n

n nn

n x
f x R x

x n c





 

 
  

  

 
   

   

1 12 3 4

1

1 1
ln 1

2 3 4 1 1

n nn n

n

x xx x x
x x

n n c

 



 
       

 
, 0 1c x   

0x 
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Example 8.3. Write down Maclaurin’s formula for the function ( ) sinf x x . 

The solution. Let’s find the value of this function and its derivatives at a 

point  

(0) 1f   , (0) 0f   , (0) 1f    , 
( 4 )

(0) 0f  , 
( 5 )

(0) 1f  , …, 

( )

1, 1, 5, 9, , 4 3, ;

(0) 1, 3, 7,11, , 4 1, ;

0, 2, 4, 6,8, , 2 , .

n

if n k

f if n k

if n k

 


   

 

 1, 2, 3,k  ; 

Now let’s write the Maclaurin’s formula for the given function, in which 

only odd terms will remain (here the remaining term is given in Peano form): 

3 5 7 2 1

1 2
( ) sin ( 1) ( )

3! 5! 7 ! (2 1)!

n

n nx x x x
f x x x o x

n




        


. 

Maclaurin’s formula has a similar form for the function ( ) cosf x x , with 

the only difference that only even terms will remain in it: 

2 4 6 2

2 1
( ) cos 1 ( 1) ( )

2! 4! 6! (2 )!

n

n nx x x x
f x x o x

n


         . 

The last formula can be easily obtained by differentiating the previous 

Maclaurin’s series. 

Example 8.4. Write the Maclaurin’s formula for the function 
sin

( )
x

f x e  

with precision to members 3
x . 

The solution. Since we have already received the representation of the 

exponent in the form of Maclaurin’s formula, we can also represent the given 

function using it: 

2 3

sin 3sin sin sin
1 ( )

1! 2! 3!

x x x x
e o x     . 

Here, instead of 3
( )o x , we should write 3

(sin )o x , but due to the 

equivalence of infinitesimals x  and sin x  we can write 3
( )o x . Now let’s use the 

representation of the function sin x  in the form of Maclaurin’s formula in the 

following form: 

3

4
sin ( )

3!

x
x x o x   . 

Let’s collect all previous representations into one expression. As a result, 

we get: 

3 2 3

sin 3
1 ( )

6 2 3!

x x x x
e x o x

 
      

 

. 

0x 
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In this representation, the term with 
3

x  disappears, so we finally get: 
2

sin 3
1 ( )

2

x x
e x o x    . 

Similarly, you can get Maclaurin’s formula for the function 
tg

( )
x

f x e  with 

accuracy 
6

( )o x : 

2 3 4 5

tg 63 37
( ) 1 ( )

2 2 8 120

x x x x x
f x e x o x        . 

Important Note. The Taylor and Maclaurin formulas are a powerful tool 

for unraveling complex uncertainties (along with Lhospital’s rule). However, one 

should use this tool very carefully, understanding how many members of the 

representation need to be taken into account in the Taylor (Maclaurin) formula. 

Let’s consider three complex examples on this topic. 

Example 8.5. Find the representation of the function 
2 2

2
( )

(1 )

x
f x

x
 


 by  

Maclaurin’s formula. 

The solution. It is not difficult to see that the given function is the second 

derivative of the elementary function ( ) arctgg x x  for which the Maclaurin’s 

formula representation is known, namely: 

3 5 7 2 1

1 2 1

1

arctg ( 1) ( )
3 5 7 2 1

nm

n m

n

x x x x
x x o x

n



 



       


 . 

Let's find the second derivative of the function ( ) arctgg x x , which will 

give the final answer for this example: 

 
3 5 7

3 5 2 1 2 1

1

arctg 2 4 6 2 ( 1) ( )
3 5 7

m

n n m

n

x x x
x x x x x nx o x

 




               
 

  

So, the Maclaurin’s formula sought for the representation of the function 

( )g x  has the form: 

2 1 2 1

2 2

1

2
( ) 2 ( 1) ( )

(1 )

m

n n m

n

x
f x nx o x

x

 



    


 . 
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8.5. Application of the representation of functions by 

Taylor’s‒Maclaurin’s formulas for the calculation limits 

 

Important Note. The Taylor and Maclaurin formulas are a powerful tool 

for unraveling complex uncertainties (along with Lhospital’s rule). However, one 

should use this tool very carefully, understanding how many members of the 

representation need to be taken into account in the Taylor (Maclaurin) formula. 

Let’s consider three complex examples on this topic. 

Example 8.6. Find the limit: . 

The solution. We have non-classical uncertainty     . Let’s write 

Taylor’s formula for the function : 

 

. 

Example 8.7. Find the limit: . 

The solution. We have non-classical uncertainty     . We use 

Maclaurin’s formulas for the functions sin , cosx x : 

 

. 

Example 8.8. Find the limit: . 

2 1
lim ln 1
x

x x
x

  
   

  

1
ln 1

x

 
 

 

2 3

1 1 1 1
ln 1

2 3x x x x

 
     

 

2

2 3

1 1 1 1 1 1 1 1
lim lim lim

2 3 2 3 2 3 2x x x

x x x x
x x x x x  

      
                  

      

3 4
0

2 cos 3
lim

sinx

x

x x x

 
 

 

2 4

3 4 43 50 0
3

2 1
2 cos 3 32 24lim lim

sin

6 120

x x

x x

x

x x x xx x
x x

 

 
    

       
   

     
  

2 4 2 4

4

42 40 0
4

1 1
3 3 1

2 24 6 120 1 1 124 40
lim lim

24 40 60
1

6 120

x x

x x x x
x

xx x
x

 

       
              

            
    

       
   

0

(1 ) (1 )
lim

arcsin arctg

x x

x

x e x e

x x
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The solution. We have classical uncertainty 
0

0

 
 
 

. We use Maclaurin’s 

formulas for functions arcsin , arctg ,
x

x x e : 

3 5

3 5

2 30

2 3

3
arcsin , 0,

6 40

arctg , 0,
(1 ) (1 ) 3 5

lim
arcsin arctg

1 , 0,
2 6

1 , 0
2 6

x x

x
x

x

x x
x x if x

x x
x x if x

x e x e

x x x x
e x if x

x x
e x if x







   

   
   

  
 

    

    

 

 

2 3 4 2 3 4
3

33 5 70 0

21 ... 1 ... ...
2 3 8 2 3 8 43lim lim

33
......

22 8 16

x x

x x x x x x x

xx x x 

   
            

   
  

 
   

 

. 

 

Tasks for classroom and independent work 

 

I. Find the given limits using the Lhospital–Bernoulli rule: 

8.1. .  8.2. . 

8.3. . 8.4. . 

8.5. .   8.6. . 

8.7. .   8.8. . 

8.9. .   8.10. . 

2 2

3 5 3 50

(1 ) 1 (1 ) 1
2 2

lim
3

6 40 3 5

x

x x
x x x x

x x x x
x x



    
            

     
    

          
    

0

3 4 12
lim

3sin 4 12 sinx

tg x tgx

x x




2

0

1
lim
x

xctgx

x



3
0

( 1) 2( 1)
lim

x x

x

x e e

x

  

3
0

arcsin 2 2 arcsin
lim

4x

x x

x



1

lim
ln 1

x

x

x x

x x



 
4

0

cos cos(sin )
lim
x

x x

x



  2

1

lim 2

x
tg

x

x





  
sin

0

lim
x

x

ctgx


1

lim
2 1

x

x

x
tg

x





 
 

 

2

1

0

ln
lim

ln

x
x

x
x

a x a

b x b
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8.11. .  8.12. . 

8.13. .  8.14. . 

II. Write down Maclaurin’s formulas for the following functions: 

8.15. a) ;  b) ( ) tgf x x ;  c) ( ) shf x x ;  d) 
2

1

3 2
y

x x


 
;   

e) ( ) arctgf x x ;  f) ( ) chf x x ;  g) ln( 1)y x  . 

 

III. Write down Taylor’s formulas for the following functions: 

8.16. a) 
2

ln( )y x x  (at the point 1x  );  b) 
1

sin( )
y

x
  (at the point 

2
x


 ); 

c) 
1

xy e  (at the point 1x  );  d) 
1

sin xy e  (at the point 
2

x


 ). 

IV. For the function  write down the Maclaurin’s formula with 

residuals term in the Peano form up to  if: 

8.17. .  8.18. . 

8.19. .  8.20. . 

8.21. Using Maclaurin’s formula, calculate with accuracy 
5

10


 : a) ;  

b) . 

V. Find out the origin and estimate the errors of approximate equalities: 

8.22. . 

8.23. . 

8.24. . 

VI. Using Maclaurin’s formula, calculate the given limits: 

8.25.

 

.   8.26. . 

8.27. . 8.28. . 

1

1 1
lim

ln 1x x x

 
 

 

2
lim

x

x

arctgx


 
 
 

2

1

0

arcsin
lim

x

x

x

x

 
 
 

2

1

0

lim
x

x

tgx

x

 
 
 

( ) (1 )f x x


 

( )y f x

n
x

3 23
( ) 1 2 1 3 ,  3f x x x x x n      

2
2

( ) ,  5
x x

f x e n


 

( ) ln(cos ),  6f x x n  ( ) sin(sin ),  3f x x n 

e

1,2
(1,1)

 
2 4

cos 1 ,  0; 8
2 24

x x
x x    

 
2 3

ln(1 ) ,  0; 0, 2
2 3

x x
x x x    

 
3 5

,  0; 0, 3
3 5

x x
arctgx x x   

2

2

3
0

cos
lim

sin

x

x

e x

x x





 
 

 

 
 

3
0

sin (1 )
lim

x

x

e x x x

x

 

23

5
0

sin(sin ) 1
lim
x

x x x

x

   
 

  
2

0

1 ctg
lim
x

x

x x
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8.29.

 

.   8.30. . 

8.31. .               8.32. . 

VII. Find the given limits using the Lhospital–Bernoulli rule and compare 

with the results of the examples 4.7, 4.8, 4.13, 4.14 Practical Lesson 4: 

8.33. 
0

(1 ) 1
lim

n

x

x

x

  
 
 

. 

8.34. 
2

0

1 1

lim

m

x

x
x

m

x

 
  

 

 

 
 

. 

8.35. 
1

2
81

81 81 ( 81)
lim ,  

( 81)

n n n

x

x n x
n

x





   



. 

8.36. 
2

0

81 81 2 81
lim ,  

x p p x p

x

p
x

 



  
 . 

 

Answers and instructions 

 

8.1. .     8.2. .  8.3. .       8.4. .         8.5. .   

8.6. .  8.7. .  8.8. 1.           8.9. 1.   

8.10. .     8.11. .      8.12. .  

8.13. .                  8.14. .     8.17. .   

8.18. .       8.19. . 

8.20. . 8.21. a). 1, 64872 ; b). 1,12117 . 

8.25. .                 8.26. .        8.27. . 8.28. .  

8.29. .                   8.30. .        8.31. .      8.32. 
1

4e


.  

8.33. n .        8.34.  
2

1

2

m

m


8.35. 2( 1)

81
2

nn n 
.  8.36. 

2
81 ln 81

p
. 

3
0

sh(tg )
lim

arcsinx

x x

x

 

 
 

sin

3
0

1 (cos )
lim

tg

x

x

x

x

 
 
 

2

4
0

1 1 cos
lim

tgx

x x

x

   
 

  

1

2 [sin( ) ]

0

lim cos
2

x x x

x

x
x





 
 

 

2 1 3 1 6 1 4 2

1 6
2

e


2 2
(ln ln ) 2a b

e


1 2
2

e


1 6
e

1 3
e

2

3 3
( )

6

x
x o x 

2 3 4 5 52 5 1
1 2 ( )

3 6 15
x x x x x o x     

2 4 6

6
( )

2 12 45

x x x
o x   

3

3
( )

3

x
x o x 

1 12 1 3 19 90 1 3

1 2 1 2 1 3
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PRACTICAL LESSON  9 

Local extremum of FOV. 

The biggest and the smallest the value  

of the function on the segment 

 

9.1. The concept and definition of  

the local extremum of the FOV. 

Necessary and sufficient conditions for the existence 

of a local extremum of the FOV 

 

First, we will present some important concepts and definitions related to the 

topic of the practical session. 

Definition 9.1. A point  is called a point of a local maximum (or 

minimum) of a function ( )f x  if in the domain of the function there is such a 

neighborhood of the point  in which the inequality holds 

0
( ) ( )f x f x  (or 

0
( ) ( ))f x f x . 

Definition 9.2. The points of local maximum and local minimum are called 

points of local extremum, and the values of the function at these points are called 

local maximum and local minimum or local extremum, respectively. 

Definition 9.3. Points where the derivative ( )f x  is zero are called 

stationary points. 

Definition 9.4. The points at which the derivative ( )f x  is zero or does not 

exist are called critical points, or critical points of the first kind. 

We formulate the conditions for the existence of a local extremum. 

Theorem 9.1. (A necessary condition for the existence of a local 

extremum). If the function ( )f x  has a local extremum at a point  and is 

differentiable at this point, then the condition 
0

( ) 0f x   is necessarily fulfilled. 

Theorem 9.2. (The first sufficient condition for the existence of a local 

extremum). 

Let  is the critical point of the first kind of function , which is 

continuous at this point, and let there be a neighborhood  of the point 

, in which the function has a derivative  except, possibly, the point , then: 

1) if the derivative is ( ) 0f x   in the interval , and the 

derivative is ( ) 0f x   in the interval , then  is the point of the local 

maximum of the function ( )f x ; 

0
x

0
0 x x   

0
x

0
x

0
x ( )f x

 0 0
;x x  

0
x ( )f x

0
x

 0 0
;x x

 0 0
;x x 

0
x
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2) if the derivative is ( ) 0f x   in the interval , and the 

derivative is ( ) 0f x   in the interval , then  is the point of the local 

minimum of the function ( )f x ; 

3) if in both intervals  and  the derivative  has 

the same sign, then  is not an extreme point of the function ( )f x . 

Theorem 9.3. (The second sufficient condition for the existence of a local 

extremum). Let  – is a stationary point of the function ( )f x  (i.e. ), 

and there is a second continuous derivative around the point , and . If 

, then  – is the point of the local minimum; if , then  – is 

the point of the local maximum. 

Theorem 9.4. (The third sufficient condition for the existence of a local 

extremum). Let there exist a continuous derivative  in the neighborhood of a 

stationary point , moreover , and . 

Then: 

1) if is even number, and  then  has a local maximum at 

the point ; 

2) if is even number, and  then  has a local minimum at 

the point ; 

3) if  is odd number, then  there is no local extremum at the point . 

 

9.2. The algorithm for studying  

the function at the extremum. 

Examples of the study of functions  

for a local extremum 

 

Let us present the algorithm for studying the function at the extremum, 

justified by Theorem 9.1 and Theorem 9.2: 

1) find critical points of the first kind for ( )f x . To do this, you need to 

solve the equation ( ) 0f x   and among its solutions, select only those valid 

points that are internal points of the domain of the function; in addition, find 

points where the derivative ( )f x  does not exist; 

2) if the function ( )f x  does not have critical points, then it does not have 

extrema either. If there are critical points, then it is necessary to investigate the 

sign of the derivative in each of the intervals into which the domain of the 

 0 0
;x x

 0 0
;x x 

0
x

 0 0
;x x  0 0

;x x  ( )f x

0
x

0
x  0

0f x 

0
x  0

0f x 

 0
0f x 

0
x  0

0f x 
0

x

 
 

n

f x

0
x

 
 0

0
n

f x     
 

 
1

0 0 0
0

n

f x f x f x


    

n 
 

0
( ) 0

n

f x  ( )f x

0
x

n 
 

0
( ) 0

n

f x  ( )f x

0
x

n  ( )f x
0

x



119 
 

function is divided by these critical points. For this, it is enough to determine the 

sign of the derivative at any one point of the interval, since the derivative can 

change its sign only when passing through the critical point; 

3) by changing the sign ( )f x  when passing through the critical points from 

left to right, determine the points of maxima and minima and calculate the value 

of the function ( )f x  at these points. It is advisable to summarize the research 

results in a table. 

Let us consider a number of examples of the study of functions for a local 

extremum. 

Example 9.1. Find the critical points of the function 
2

36 9 9( 1)y x x    . 

The solution. Function definition domain: ( ; )x   .  

Let’s find the derivative ( )y x : 
1

3( ) 6(1 ( 1) )y x x


    ; ( ) 0y x   at a point 

 and does not exist at a point . Therefore, this function has two critical 

points of the first kind: , . 

Example 9.2. Find local extrema of the function 
2

3( ) 6 9 9( 1)y x x x    . 

The solution. We conduct research according to the following algorithm: 

1. Function definition domain: ( ; )x   . 

2. Critical points:  (see example 9.1). 

3. If , then  and the function also increases on this 

interval. If , then  and the function also decreases on this 

interval. If , then  and the function increases again on the 

specified interval. We summarize these results in Table 9.1. 

Table 9.1 

x   1;x  1x   2;1x  2x    ;2x  

 xf   + Does not exist − 0 + 

 xf  ↑   31max f  ↓   62min f  ↑ 

Conclusion. Therefore, the function  has a 

maximum  at the point , and a minimum  at the 

point . 

Example 9.3. Find local extrema of a function 

. 

2x  1x 

1
1x 

2
2x 

1 2
1, 2x x 

 ; 1x    0 0f  

 1; 2x   1, 008 0f  

 2;x    9 0f  

   
2

36 9 9 1f x x x   

 m ax
1 3f  

1
1x   m ax

1 3f  

2
2x 

 
3

23
2 3

3 2

x
f x x x   
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The solution. Function definition domain . The derivative has 

the following form: . We solve the equation :

, . From here we get stationary points: , 

. There are no points where the derivative  does not exist. Therefore, the 

stationary points are the only critical points of the given function, so it is possible to 

find the extrema under the second sufficient condition: since  and 

 when  is also a point of a local maximum ; 

, when  – a point of a local minimum, . 

Remark. From this we can conclude that the study of the function at the 

extremum under the second sufficient condition is easier than under the first. 

However, this sufficient condition can be applied to a narrower class of 

functions. It cannot be used to study those critical points at which the first 

derivative does not exist, as well as those stationary points at which the second 

derivative is zero. 

Example 9.4. Investigate the extremum of a function 

 at a point . 

The solution. This function is defined at . Let’s find the 

corresponding derivatives: 

,  ; 

,  ; 

,  ; 

,  . 

Conclusion. A given function has a local minimum at a point. 

Example 9.5. Find the critical points and investigate the extremum of the 

function: 

2

2
( )

1

x
f x

x



. 

The solution. The domain of this function is the entire numerical axis: 

( , )x   . Let’s find the stationary (critical) points of this function. To do this, 

we define the derivative and equate it to zero: 

2

1,22 2 2

2 1
( ) 2 0 1

1 ( 1)

x x
f x x

x x

  
        

  
. 

 ;x   

 
2

3 2f x x x      0f x 

2
3 2 0x x   

1
1x 

2
2x 

1
1x 

2
2x 

( )f x

  2 3f x x  

 1 0,f  
1

1x   max

13
1

6
f  

 2 0f  
2

2x   min

7
2

3
f  

  2 cos
x x

f x e e x


   0x 

( , )x   

  2 sin
x x

f x e e x


     0 0f  

  2 cos
x x

f x e e x


     0 0f  

  2 sin
x x

f x e e x


     0 0f  

 
 

4

2 cos
x x

f x e e x


  
 
 

4

0 4 0f  
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So, we have only two stationary points 
1,2

1x   . This function has no other 

critical points of the first kind. 

Let’s examine these points for extrema, using the first sufficient condition 

for the existence of a local extremum (see Theorem 9.2). Let’s summarize all the 

research results in Table 9.2. 

Table 9.2 

x   ; 1x     1x     1;1x    1x    1;x    

 f x  − 0 + 0 − 

 f x  ↓  min
1 1f     ↑  max

1 1f   ↓ 

Conclusion: the given function has a local minimum at the point 
1

1x    

equal to  m in
1 1f    , and a local maximum at the point 

2
1x   equal to 

 m in
1 1f  . 

Example 9.6. Find the critical points and investigate the extremum of the 

function: 

2

3( ) ( 2) (2 1)f x x x    . 

The solution. The domain of this function is the entire numerical axis: 

( , )x   . 

Let’s find the critical points of this function. To do this, we define the 

derivative and equate it to zero: 

2

3

3

10 1
( ) ( 2) (2 1) 0

3 2

x
f x x x

x


  

        
 

. 

So, we have only two critical points: 
1

1x   (the derivative is zero – a 

stationary point), and 
2

2x   (the derivative does not exist). We omit the research 

process, and we summarize the research results themselves in Table 9.3. 

Table 9.3 

x   ;1x    1x    1; 2x   2x    2;x    

 f x  + 0 − does not exist + 

 f x  ↑  max
1 3f   ↓  min

2 0f   ↑ 

Conclusion: the given function has a local maximum at a point 
1

1x   equal 

to  m ax
1 3f  , and a local minimum at a point 

2
2x   equal to  m in

2 0f  . 
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9.3. The largest and smallest value  

of the function on the segment. 

Еxamples of finding the largest and smallest  

values of a function on a segment 

 

Let’s formulate an algorithm for finding the largest (smallest) value of a 

function  that is continuous on a segment : 

1. Find the critical points of the first kind of function , which belong 

to the interval . 

2. Calculate the value of the function  at the found critical points and 

limit points segment ,  and then choose the largest (smallest) among 

these values. 

Let’s consider a numbthener of examples of finding the largest and 

smallest values of a function on a segment. 

Example 9.7. Find the largest and smallest value of the function 
3

( ) 3f x x x   on the segment [ 2,3] . 

The solution. We find the first derivative 
3 2

( ) (3 ) 3 3 0f x x x x       

and stationary points: 
1,2

1x   . We determine the value of the function at 

stationary points: 

(1) 2f     and   ( 1) 2f    . 

Next, we calculate the value of the function at the boundaries of the 

segment: 

( 2) 2f      and   (3) 18f   . 

From the obtained four values, choose the largest and smallest. 

Conclusion. The largest value of the function on the given segment is 

(1) ( 2) 2f f   , and the smallest is (3) 18f   . 

Example 9.8. Find the lengths of the sides of the rectangle with the largest 

area that can be inscribed in the ellipse 
2 2

2 2
1

x y

a b
  , where 0, 0a b   the 

lengths of the corresponding semi-axes of the ellipse. 

The solution. Let’s construct the objective function – the expression of the 

area of the rectangle. Let’s choose an arbitrary point 
1
( , )M x y  that lies on the 

ellipse in the first quarter of the Cartesian rectangular coordinate system XOY . It 

is obvious that the variables ( , )x y are related to each other by the following ratio: 

( )f x  ;a b

( )f x

( ; )a b

( )f x

0
x a

0
x b
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2

2
1

x
y b

a
  . 

Let’s form a rectangle with vertices at the following points: 
1
( , )M x y , 

2
( , )M x y , 

3
( , )M x y  ,

4
( , )M x y . Write down the formula for the area of a 

rectangle
1 2 3 4

M M M M . 

2

2
2 2 4 1 max

x

x
S x y xb

a
     . 

So, the task was reduced to the study of the objective function 

2

2
( ) 4 1

x
S x xb

a
   for a local maximum. 

Let’s find the derivative of the function ( )S x  and equate it to zero: 

2 2 2 2
2

2 2 22 2

2

2 2

2

4
( ) 4 1 4 1 4 4 1 0

2 1 1

x

x x x x baS x xb b xb b
a a ax x

a
a a


 

          
 
   

. 

IWS! Find the second derivative ( )S x  and check what sign it has under the 

condition that 0 x a  . 

After identical transformations, we get the quadratic equation: 

2

2

2
1 0

x

a
  , 

which has two roots, but we choose only the positive root because 0, 0a b  : 

2

a
x  . 

The expression for the second unknown has a similar form: 

2

b
y  . 

Conclusion. The sides of the rectangle 
1 2 3 4

M M M M  with the largest area 

inscribed in the given ellipse should be as follows: the horizontal side 
1 2

M M  

should have the size 2 a , and the vertical side 
2 3

M M  – 2 b . The area of 

such a rectangle is: 
m ax

2S ab . 
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Example 9.9. Find the dimensions of a right circular cylinder, which would 

have the largest volume under the condition that the area S  of its complete 

surface is fixed and given. 

The solution. Let the radius of the base of the cylinder be equal to R , and 

the height equal to H . Let’s write down the expression for calculating the total 

surface area of this cylinder: 

2
2 2S R RH   . 

Let’s express the height H  from this formula 

2
2

2

S R
H

R






 . 

Now let’s construct the objective function (expression for the volume V ) 

that needs to be maximized: 

2

2 2 32

2 2

S R SR
V R H R R

R


  




     . 

Thus, the task was reduced to the study of the objective function 

3
( )

2

SR
V R R   for a local extremum under the obvious condition that 0R  . 

Let’s find the derivative of the objective function ( )V R  and set it equal to 

zero: 

3 2
( ) 3 0

2 2 6

SR S S
V R R R R 




 

        
 

. 

Next, we find the derivative of the second order ( )V R  and set its sign: 

( ) 6V R R   . 

Since we obtained the inequality ( ) 0V R  , the volume of the cylinder will 

be maximum if its dimensions are chosen as follows: 

6

S
R


 , 2 2

6

S
H R


  . 

Conclusion. The axial section of such a cylinder should be a square. 

Example 9.10. Find the sides of a rectangle with the largest perimeter 

inscribed in a given semicircle with radius R . 

The solution. Let the vertical side of the inscribed rectangle be equal to x , 

and half of the horizontal side – y  (make a drawing yourself). Then the perimeter 
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P  of the rectangle (as an objective function) will take the form: 

2 4 maxP x y   . 

Now let’s write the relation that connects the unknowns x  and y : 

2 2 2
x y R  . 

Next, let’s express one of the variables in terms of another 
2 2

y R x   

and substitute its expression into the target function: 

2 2
( ) 2 4 max

x

P x x R x    . 

So, the problem is reduced to the problem of finding the local extremum of 

a function of one variable. After differentiation, we get the equation: 

2 2 2 2

( ) 2
( ) 2 4 0 1

x x
P x

R x R x


     

 

. 

Solving this equation, we have: 
5

R
x  . Let’s find the second unknown 

from the equation: 
2 2

y R x  . As a result, we have: 
2

5

R
y  . 

Answer: the sides of the required rectangle should be equal to: 
5

R
x  ,

4
2

5

R
y  . 

IWS! Find the second derivative ( )P x  and find out its sign. 

Example 9.11. At what height above the center of a round table with a 

radius R  should an electric lantern be placed so that the illumination of the edge 

of the table is the greatest? 

Indication. The brightness I  of the lighting is described by the formula  

2

sink
I

h


 ,                                              (9.1) 

where   – is the angle of inclination of the light rays; h  the distance of the light 

source from the illuminated area; k  power of the light source.  

The solution. Let’s make a picture Fig. 9.1. On it, the light source is 

marked with the letter A, the center of the table with the letter B, the periphery of 

the table with the letter C. All other designations and explanations are given 

below in the solution text. 
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Let x  the desired height of the light source be placed above the center of 

the table. Let’s write certain relations that connect all the characteristics contained 

in the formula (9.1): 

sin sin tg
x

x h R
h

      ,  2 2
h x R  ,  or  

cos

R
h


 . 

Substitute the obtained ratio into formula (9.1) and find the maximum of the 

obtained function by variable  : 

2

2

sin cos
m ax

k
I

R 

 
  ; 

 

Fig. 9.1 

 
2

2

2

sin cos 1
0 sin cos 0 tg

2

k

R

 
  


  

     
 

. 

Now you can determine the desired distance x : 

tg
2

R
x R   . 

 

Tasks for classroom and independent work 

 

I. Find intervals of monotonicity of functions: 

9.1. .   9.2. . 

II. Find local extrema of functions: 

9.3. .    9.4. . 

2
ln(4 )y x 

2

2

1

x
y

x




2

3 3

x

y x e


 

3

1

x
y

x




А 

h  
x 



    С В 
R 
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9.5. .    9.6. . 

9.7. .    9.8. . 

III. Find the largest and smallest values of the function  on the 

segment : 

9.9. .  9.10. . 

9.11. A trapezoid is inscribed in a semicircle with a radius R , the base of 

which is the diameter of the semicircle. Determine the angle at the base of the 

trapezoid so that its area is the largest. 

9.12. A wire of length L  should be cut into two parts, one of which should 

be bent into a circle, and the second into a square. At what length of each of the 

parts will the sum of the areas of the circle and the square be the largest? 

9.13. Inscribe the cylinder of the largest volume into the cone with the 

height H  and radius R  of the base. What are the dimensions of this cylinder? 

9.14. A weight load P  lying on a horizontal rough surface needs to be moved 

by some applied force F . At what angle of inclination   of the vector of action of 

this force F  to the horizon will its magnitude be the smallest? Assume that the 

coefficient of friction between the load and the rough surface is equal to k . 

9.15. The bending resistance of a beam of rectangular section is directly 

proportional to the product of its base b  by the square of the height h . What should 

be the cross-sectional dimensions of the beam, if it is cut from a round log with a 

diameter D  under the condition that its resistance to bending would be the greatest? 

9.16. It is necessary to make a box with a lid, the volume of which is equal to V

. The shape of the box is a rectangular parallelepiped, and the lengths of the sides of 

the base are equal to one to two. What should be the dimensions of all the ribs of the 

box, so that the least amount of sheet material was spent on its manufacture? 

9.17. 
*)

A uniform rod of length 2l R  is placed in a cup having the shape 

of a hemisphere of radius R . Find the equilibrium position of the rod under the 

condition that the rod can move in the cup without sliding friction. (Reference. 

The equilibrium position of the body is achieved under the condition of a 

minimum of its potential energy). 

9.18. Enterprise Р must be connected by a highway with a straight section 

of the railway that passes through city A. The distance from the enterprise Р to the 

nearest point B of the railway is  km, and the distance from the city to 

the same point is  km. The cost of transportation by highway is  

1y x x 
2

( 2)(3 )x x
y

x

 


1
y x

x
 

21
ln( 1)

2
y arctgx x  

( )f x

[ ; ]a b

4 2
2 3, [ 3; 2]y x x x    

2

2

3
,  [ 1;3]

2 5

x
y x

x x


  

 

40PB 

200AB  5
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times higher then by the rail. To what point should a highway be laid from the 

railway so that the cost of transportation is the lowest? 

9.19. What should be the angle   at the top of an isosceles triangle of a 

given area S , provided that the radius of the circle inscribed in this triangle would 

be the largest? 

9.20. A right parallelepiped is inscribed in a hemisphere with radius R , 

based on a regular hexagon. Find the height and side of the base of the 

parallelepiped if its volume is maximum. 

9.21.
*) 

Solve task 9.13, but instead of a cylinder, you need to take a straight 

regular polyhedral prism with the number of faces equal to 2n . 

 

Answers and instructions 

 

9.1.  – increases,  – decreasing.   

9.2.  – decreasing,  – increases. 

9.3. . 9.4. . 

9.5. .  9.6. .   

9.7. . 

9.8. . 9.9. 
m in m ax

2, 66y y  . 

9.10. 
m in m ax

0, 5, 1y y  . 9.11. 
3


. 9.12. 

4

L


, 

4

4

L


.   

9.13. Cylinder height – 
3

H
h  ; base radius – 

2

3
r R .  

9.14. arctg k  . 9.15. .   

9.16.  32
9

V
h  , 3

3a V , 
3

3

2

V
b  .   

9.17.  at ; at  – no equilibrium position.   

9.18.  km.  9.19. 
3


  . 9.20. 

2

3
a R , 

3

R
h  . 

9.21. The radius of the circle in which a regular polygon is inscribed is 

equal to 
2

3
r R ; the height of the parallelepiped is 

3

H
h  . 

( 2;0) (0; 2)

( ; 1), (1; )   ( 1;1)

2 33

min max
(0) 0,  (2) 4y y e


 

m in
(3 2) 6, 75y  

max
(2 3) 2 3 9y 

m ax
(2, 4) 1 24y 

m in m ax
(1) 2,  ( 1) 2y y   

m ax
(1) 4 0,5 ln 2y  

3 3 ,  6 3b D h D 

2 2
128

cos
16

l l R

R


 
 4l R 4l R

180AC 
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PRACTICAL LESSON  10 

Convexity-concavity of the FOV, inflection points.  

Asymptotes of the curve. 

A complete study of functions by the methods  

of differential calculus 

 

10.1. Convexity-concavity of the FOV, inflection points 

 

As before each practical lesson, we will briefly state the necessary 

theoretical provisions regarding the stated topic of Practical Lesson No 10. 

We will give the definition of convexity-concavity of curves with the 

involvement of derivatives of the first and second order. Involvement of the 

derivative of the first order leads to the use of the concept of tangent in the 

definitions of convexity-concavity. Let’s list them. 

Definition 10.1. A curve ( )y f x  is called convex (denoted by ) on the 

interval ( ; )a b , if all its points, except for the point of contact, lie below its 

arbitrary tangent on this interval. 

Definition 10.2. A curve ( )y f x  is called concave (denoted by ) on the 

interval ( ; )a b , if all its points, except for the point of contact, lie above any of its 

tangents on this interval. 

Definition 3. The inflection point is the point of the curve ( )y f x  that 

separates its convex part from the concave part. 

The convexity and concavity intervals of the curve ( )y f x  are found by 

the results of Theorem 10.1. 

Theorem 10.1. Let the function ( )y f x  be twice differentiable on , 

then: 

1) if , then the curve ( )y f x  is convex ( ) on 

; 

2) if , then the curve ( )y f x  is concave ( ) on 

. 

Definition 10.4. The points at which the second derivative  is zero or 

does not exist are called critical points of the second kind of the function 

( )y f x . 

Therefore, if  – is the abscissa of the inflection point of the function 

( )y f x , then is the critical point of the second kind of this function. The 

converse is not always true. 





 ;a b

   0, ;f x x a b    

 ;a b

   0, ;f x x a b    

 ;a b

 f x

0
x

0
x
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Let us establish sufficient conditions for the existence of an inflection point. 

Theorem 10.2. Let be  – the critical point of the second kind of function 

( )y f x . If the derivative  changes sign when passing through the critical 

point , then the point  is an inflection point of the curve 

( )y f x . 

We present the algorithm for finding the inflection points of the curve 

( )y f x . 

1) find the domain of the given function ( )y f x ; 

2) find the second derivative  of this function and establish critical 

points of the second kind from two conditions: 

a) the second derivative  is zero and 

b)  does not exist; 

3) investigate the change in the sign of the second derivative when passing 

through each of the critical points : if the second derivative changes sign when 

passing through the selected critical point , then the point  is the 

inflection point of the function ( )y f x ; otherwise, this point is not an inflection point. 

Let’s consider typical examples of finding convexity-concavity intervals 

and inflection points 

Example 10.1. Find the convexity-concavity intervals and inflection points 

of the function . 

The solution. The domain of the given function: . 

The first derivative has the following form: . The second 

derivative looks like this: . Hence we have a single critical 

point of the second kind: . We divide the domain of definition of the 

function with the found point into two intervals and determine the sign of the 

second derivative in each of them: 

1) ; , the function is convex ( ); 

2) ; , the function is concave ( ). 

Conclusion. The point  is the inflection point of the curve 

. 

Example 10.2. Find the convexity-concavity intervals and inflection points 

of the function 
2

3( 5)y x x  . 

0
x

 f x

0
x   0 0 0

;M x f x

 f x

 f x

 f x

0
x

0
x   0 0 0

;M x f x

 
x

f x xe




 ;x   

   1
x

f x e x


  

   2
x

f x e x


  

2x 

 ; 2x    0 0f   

 2;x    3 0f   

 2

0
2; 2M e



 
x

f x xe
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The solution. The domain of the given function: . 

Let’s find the first derivative: 
2

3

3

5 3
( 5)

3 5

x
y x x

x


 

     
 

. 

Let’s find the second derivative: 
4 33

5 3 10 6

3 9 ( 5)5

x x
y

xx


  

     
 

. 

The set of critical points of the second kind consists of two points {5;6} : 

when 
1

5x  the second derivative does not exist; when 
2

6x   the second 

derivative is zero. 

We check the change in the sign of the second derivative y   when passing 

through each of these points: 

1) ( ;5)x   , (4) 0y   ; therefore, the function is convex ( ); 

2) (5;6)x , (5,5) 0y   ; therefore, the function is convex ( ); 

3) (6; )x   , (7 ) 0y   ; therefore, the function is concave ( ). 

Conclusion. The point (6, 6)M  is the only inflection point of the curve
2

3( 5)y x x  . 

 

10.2. Asymptotes of the curve 

 

Definition. A straight line  is called an asymptote of a curve if the 

distance  from the variable point  of the curve to this straight line  goes to 

zero, if the point  moving along the curve recedes to infinity (Fig. 10.1). 

The curve ( )y f x  can have vertical, horizontal and inclined asymptotes. 

1. A straight line  is a vertical asymptote of a curve ( )y f x  if 

, or , or . 

2. A straight line  is a horizontal asymptote of a curve ( )y f x  if 

, or
 

, or . 

3. A straight line  is an inclined asymptote of a curve ( )y f x  if 

there are finite boundaries: 

                                 (10.1) 

 

 

 

 ;x   







l

 M l

M

0
x x

0 0

lim ( )
x x

f x
 

 
0 0

lim ( )
x x

f x
 

 
0

lim ( )
x x

f x


 

0
y y

0
lim ( )
x

f x y
 


0

lim ( )
x

f x y
 


0

lim ( )
x

f x y
 



y kx b 

 
( )

lim 0, lim ( ) .
x x

f x
k f x kx b

x 
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Fig. 10.1 

Remark 10.1. If at least one of the limits (10.1) does not exist or is equal to 

infinity, then the curve  does not have a sloping asymptote. 

Remark 10.2. If , then , therefore the equation of the 

horizontal asymptote has the form: . Since this equation is a special case of 

the equation , there are not three, but two types of asymptotes: vertical 

and non-vertical. 

Remark 10.3. The asymptotes of the curve  at  and 

 may be different. Therefore, when finding the asymptotes of the 

boundary (10.1), it is necessary to calculate separately for  and . 

Example 10.3. Find the asymptotes of the curve: . 

The solution. Let’s find the vertical asymptotes. Since  it is not 

defined at point  and the corresponding limits are equal 

,  , 

then straight line  is the vertical asymptote of the curve. 

We are looking for a inclined asymptote according to formulas (10.1) at 

: 

,   

The straight line  is the inclined asymptote of this curve at 

. It is not difficult to make sure that this line is an asymptote and at 

. So, the given curve has two asymptotes: vertical  and inclined 

. 

( )y f x

0k   lim
x

b f x




y b

y kx b 

( )y f x x  

x  

x   x  

 
2

3 4 1x x
f x

x

 


( )f x

0x 
2

0

3 4 1
lim
x

x x

x

 
 

2

0

3 4 1
lim
x

x x

x

 
 

0x 

x  

2

2

3 4 1
lim 3
x

x x
k

x 

 
 

2
3 4 1

lim 3 4.
x

x x
b x

x

  
   

 

3 4y x 

x  

x   0x 

3 4y x 

  xfy 

 

 Y

 X

O 

 M

 

 l

asymptote  
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Example 10.4. Find the asymptotes of the curve: 
3

( )
2

x
y x

x



. 

The solution. The function is defined in the intervals ( , 0)  and (2, ) . 

Since the limits 

3

2 0

lim
2x

x

x 

 


, 

then the straight line 2x   is the vertical asymptote of the curve ( )y x . 

The curve has no horizontal asymptotes, since the limits 
3

lim
2x

x

x

 


 

are not finite values. 

Let’s establish the existence of inclined asymptotes. 

I. Let’s start with the right asymptote for x   : 

1) 
3

1 2

( )
lim lim 1

( 2)x x

y x x
k

x x x 

  


; 

2) 
3

1 1

( 2 )
lim [ ( ) ] lim lim

( 2) 2x x x

x x x x
b y x k x x

x x  

    
        

    

 

2
lim 1

2 ( 2 )x

x

x x x

 
  

   

. 

Thus, the right inclined of the asymptote exists and its equation has the 

form: 1y x  . 

II. Now let’s establish the existence of the left asymptote for x   : 

1) 

3

2

0;( 2) ( 2)( )
lim lim lim ( ) lim 1

0 ( 2)x x x x

x x

xx xy x x
k x

xx x x x   

 
         

  
; 

2) 
3 3

2 1

( )
lim [ ( ) ] lim lim

2 2x x x

x x
b y x k x x x

x x  

   
         

    
   

 

2 ) ( 2 )
lim lim

2 2x x

x x x x x x x

x x  

       
    

  

 

2
lim 1

2 ( 2 )x

x

x x x

 
    

    

. 

Thus, the left inclined of the asymptote also exists and its equation has the 

form: 1y x   . 
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Conclusion. The curve 
3

( )
2

x
y x

x



 has three asymptotes: vertical 2x  , 

left inclined 1y x   , and right inclined 1y x  . 

Example 10.5. Find the asymptotes of the curve ( ) 2 arctgy x x x  . 

The solution. It is easy to check that the given function has no vertical and 

horizontal asymptotes. Let’s find the inclined asymptotes. First, let’s direct 

x    and find the right inclined asymptote: 

1) 
1

2 arctg arctg
lim lim 1 2 1
x x

x x x
k

x x   

  
    

 
; 

 1
lim ( 2 arctg ) 2 lim arctg 2

2x x

b x x x x



  

       . 

The equation of the right inclined asymptote was obtained: y x   . 

Now let’s direct x    and find the left inclined asymptote; 

2) 
2

2 arctg arctg
lim lim 1 2 1
x x

x x x
k

x x   

  
    

 
; 

 2
lim ( 2 arctg ) 2 lim arctg 2

2x x

b x x x x



   

 
         

 
. 

The equation of the left inclined asymptote was obtained: y x   . 

Example 10.6. Find the asymptotes of the curve given parametrically: 

1
( ) ;

( ) .
1

x t
t

t
y t

t







 
 

 

The solution. We first consider y  as a function of x : ( )y y x . Then if the 

parameter t  goes to zero, then x  goes to infinity. From this condition, we will 

find the coefficients k  and b  (which are equal to zero): 

2

0 0

lim lim 0
1t t

y t
k

x t 

  


; 

0 0

lim[ ] lim 0
t t

b y kx y
 

    . 

Thus, the first asymptote has the equation: 0y  . 

Now consider the given function in another form, as ( )x x y . Then you should 

find the above-mentioned limits under the condition that y  goes to infinity, that is, if 

the parameter 1t   . Let’s find the coefficients k  and b  for this case: 

1 21 1

1
lim lim 0
t t

x t
k

y t  


   ;                

1 1
1 1

1
lim[ ] lim 1
t t

b x k y
t  

     . 
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Thus, the second asymptote has the equation: 1x   . 

Remark. It is interesting that in the given parametric equations it is 

possible to get rid of the parameter t  and write the equation of the curve in the 

form 
1

(1 )y x


  , from which it becomes obvious that this curve has two found 

asymptotes. 

 

10.3. A complete study of functions by  

the methods of differential calculus 

 

Let’s formulate the algorithm for the complete study of the function by the 

methods of differential calculus with the construction of its graph: 

1) find the domain of the function; 

2) find the points of intersection of the graph with the coordinate axes (if 

they exist); 

3) investigate the function for periodicity, evenness and oddness; 

4) find breakpoints and investigate the behavior of the function around 

them; 

5) find intervals of monotonicity, points of local extrema and function 

values at these points; 

6) find convexity-concavity intervals and inflection points; 

7) find all the asymptotes of the curve; 

8) on the basis of preliminary studies carried out in paragraphs 1) – 7), plot 

the graph of the function. 

Remark. If the function is even (or odd), then it is enough to plot its graph 

for , and then reflect it symmetrically with respect to the axis  (or with 

respect to the origin  of the coordinates). 

We will consider the algorithm of a complete study of functions by the 

methods of differential calculus on a specific example. 

Example 10.7. Investigate and plot a graph of a function . 

The solution. 

1. The domain of the given function is the entire numerical axis, except for 

the point . 

2. Intersection of the graph with the axis: : 1 2 0y if x  . We have a 

point on the axis : . Intersection of the graph with the axis : 

1 0x if y  . We have a point on the axis : . 

0x  O Y

O

2
( 1)

2

x
y

x






2x  

O Y

O Y  10,
2

B OX

OX (1, 0)A
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3. The function is non-periodic. Since , 

the given function has neither central nor axial symmetry. 

4. Break points. The point  is a discontinuity point of the second 

kind, since . Therefore, the line  is the vertical asymptote 

of the curve. 

5. Monotonicity intervals, function extrema. Let’s find the first derivative: 

 

Therefore,  at  are stationary points 

of the function  (
3

2x    is a critical point that ( )f x  does not exist in it; 

moreover, this point does not belong to the domain of definition of the function 

 itself). We determine the sign of the derivative when passing through the 

critical points and conclude about the extrema of the function (Fig. 10.2, a). 

Conclusion: when , the function has a local maximum , 

when – a local minimum . 

6. Convexity-concavity, inflection points. 

We find the second derivative: . The derivative  and 

does not exist when . However, the critical point of the second kind 

 does not belong to the domain of the function ( )f x , so there are no 

inflection points. Let’s determine the sign of the second derivative in the domain 

of the function (Fig. 10.2, b). 

 
Fig. 10.2 

7. Asymptotes. In clause 4, it was established that a straight line  is a 

vertical asymptote of a curve ( )f x . Let’s find the inclined asymptote . 

Let’s determine the numbers  and : 

 

2 2
( 1) ( 1)

( ) ( )
2 2

x x
f x f x

x x

  
    

  

2x  

2 0

lim ( )
x

f x
  

  2x  

2

2

2 2

2( 1)( 2) ( 1) ( 5)( 1)
1 9 ( 2) .

( 2) ( 2)

x x x x x
y x

x x

     
      

 

0y  
1 2

( 1)( 5) 0 1, 5x x x x      

( )f x

( )f x

5x  
m ax

12y  

1x 
m in

0y 

3
18( 2)y x


   0y  

2x  

2x  

2x  

y kx b 

k b

2

2 2 2

2

2

2 1 2 1
1 1

( ) ( 1)
lim lim lim lim 1;

222
11

x x x x

x
f x x x x x xk

x x x
x

xx

       

 
    

    
      

      
 

 

 x
− + 

-2 

b 

 x+ + 

а 

1 -5 

-2 
- - 
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Therefore, a straight line  is a inclined asymptote. 

8. Graphing the function . Based on the research carried out in 

clauses 1 – 7 plot the given function (Fig. 10.3). 

 

Fig. 10.3 

 

Tasks for classroom and independent work 

  

I. Find intervals of concavity-convexity and inflection points of the curves 

specified in the Cartesian coordinate system: 

 10.1. .  10.2. . 

 10.3. .  10.4. . 

II. Find the inflection points of the curves given parametrically and in the 

polar coordinate system: 

   
2

( 1) 4 1
lim ( ) lim lim 4.

2 2x x x

x x
b f x kx x

x x     

   
           

  

4y x 

2
( 1)

2

x
y

x






4 3 2
( ) 8 18 6 1f x x x x x    

2
( )

x
f x xe




2 23( ) ( 4)f x x 
4 3 2

( ) 4 18 2 1f x x x x x    

−12 

−5 
−2 

−4 

4 1 

 4 xy

O 

 2x

 X

 5,0

 Y

 0min y

 12max y

Fig. 10.3 
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10.5. 

2

3

;

3 .

x t

y t t

 


 

.  10.6. 
;

sin .

t
x e

y t

 




.  10.7. 
2 cos cos 2 ;

2 sin sin 2 .

x a t a t

y a t a t

 


 

 

10.8. ( ) sin 3 , 0a a    .  10.9. ( ) (1 cos ), 0a a     . 

III. Find all asymptotes of curves: 

 10.10. .    10.11. ( ) arctgf x x x  . 

 10.12. .    10.13. . 

10.14. 
2 2

( 1) 1x y x    .                 10.15. 
2 2 2 2
( 1) ( 1)y x x x   . 

10.16. 

2
( ) ;

1

( ) .
1

t

t

e
x t

t

te
y t

t


 



 
 

.                           10.17. 
3

2

3

3
( ) ;

1

3
( ) .

1

at
x t

t

at
y t

t




 


 
 

 

IV. Explore and plot graphs of given function ; in tasks 10.24 and 

10.25 switch to the polar coordinate system. 

 10.18. .     10.19. .   

 10.20. .   10.21. . 

 10.22. .    10.23. . 

10.24. 
2 2 3 2 2 2

( ) 4x y a x y  .              10.25. 
4 4 2 2 2

( )x y a x y   . 

10.26. 
( ) ;

( ) .

t

t

x t te

y t te







                             10.27. 
3

2

3

3
( ) ;

1

3
( ) .

1

t
x t

t

t
y t

t




 


 
 

 

 
Answers and instructionsy 

 

10.1.  – convex;  – concave; .   

10.2.  – convex;  – concave; .   

10.3.  – convex;  – concave; .   

10.4.  – convex;  – concave; .   

10.5. (1, 4) , (1, 4) .  

4

3
( )

(1 )

x
f x

x




1

( ) ( 2) xf x x e 
1

( ) 2 ln
2

x
f x

x


 



( )y f x

2 2 x
y x e




3

2

4x
y

x




3 23
2y x x 

3

2
1

x
y

x




ln x
y

x


1

(1 ) xy x 

(1;3) ( ;1),  (3; ) 
1 2
(1; 6),  (3;10)M M

( ;1) (1; )
2

(1; )M e


( 2 3; 2 3 ) ( ; 2 3 ),  (2 3; )   1,2
( 2 3 ; 4)M 

( 1;3) ( ; 1),  (3; )  
1 2
( 1; 12),  (3; 184)M M  
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10.6. 
4

n
t n


   , n Z .  

10.7. 
1,2

2
3

t n


   , 
3

t n .  

10.8. 
1,2

arctg 6 33 n     , 
3 ,4

arctg 6 33 n     , n Z .  

10.9. 
1

2
2

3
n


   , 

2

4
2

3
n


   , 

3
n  , n Z .  

10.10. .   

10.11.  at ,  at .  

10.12. .  

10.13. .10.14. 1y   , 2y x  . 10.15. y x  .  

10.16. 
1

2
y x e  . 

10.17. 0y x a     

10.22. function scope: ; zero function ; ; 

 – inflection point; asymptotes:  at ,  at .   

10.23. function scope: ;  – point of repairable gap; there is 

no extremum, the function is decreasing, concave; there is no extremum, the function 

is decreasing, concave; asymptotes:  at ,  at .  

10.24. Four-petal rose. The origin of the coordinates is a double point of 

self-touch.  

10.25. Symmetrical with respect to four axes: 0x  , 0y  , y x , y x  ; 

a closed line with four turning points: ( , 0)a , ( , 0)a , (0, )a , (0, )a . The origin of 

the coordinates is an isolated point. 

 

1,  3x y x   

2y x   x   2y x   x  

0,  3x y x  

1,  2, 2x x y   

0x  1x 
2

m ax
( ) 2y e e

8 3 4 3
( ;8 3 )M e e


0x  0x   0y  x  

1,  0x x   0x 

1x   1 0x    1y  x  



Section ІІІ. Integral calculus of FOV 

Topic І. The technique of integrating the indefinite integral 

 

PRACTICAL LESSON  11 

Table of integrals and differentials. Basic methods of integration 

 

Mastering the technique of integrating an indefinite integral begins with 

studying the table of integrals. Some of the formulas in this table follow directly 

from the definition of integration as the inverse of the differentiation operation, 

the derivative table, and the invariance property (Property 6.6, [1], P. 221). The 

validity of other formulas can be checked by differentiation. 

Let a be an arbitrary function  that has a continuous derivative 

 on the interval ( ; )a b . Then the following formulas hold for this interval. 

 
11.1. Table of basic integrals 

 

1. 

1

1

u
u du C









 


 , 1   , ( )u u x . 

2.  

3.    

4. . 

5. . 

6. sh chudu u C  . 

7. ch shudu u C  . 

8. tg ln cosudu u C   . 

9. ctg ln sinudu u C  . 

10.  

11.  

12.  

13.  

 u u x

 u x

ln .
du

u C
u

 

; 0, 1;
ln

u

u a
a du C a a

a
    .

u u
e du e C 

sin cosudu u C  

cos sinudu u C 

2
ctg .

sin

du
u C

u
  

2
tg .

cos

du
u C

u
 

2
cth .

sh

du
u C

u
  

2
th .

ch

du
u C

u
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14.  

15.  

16. 
2 2

arcsin
du u

C
aa u

 
  

 
 , a const . 

17. 
2

2
ln

du
u u A C

u A
   


 , a const . 

18.  

19.  

20.  

21.  

Reference. We provide formulas for calculating hyperbolic functions: 

 

Indefinite integrals can be found using tabular integration and several 

integration methods. Tabular integration is based on the use of the table of integrals 

and properties of the integral, particularly Property 6.6 ([1], P. 221) in the case when 

 (partial cases). In other cases, various integration 

methods are used, among which there are basic methods (see below in the text). 

Examples 11.1. Calculate indefinite integrals: 

a) ;  b) ;  c) ;  d) ;  e) ;   

f) ;  g) ;  h) . 

The solution. 

a) 
4

3
5 2; 1 (5 2)

(5 2)
5, 1, 3 4 5

u x partial case x
x dx C

k formula № 

  
   

 
 . 

b) 
6 ; 6, 1

cos 6 sin 6
5 6

u x k
xdx x C

form ula №

 
   . 

c) 
2

9 ; 9, 1
ctg 9

10sin 9 9

u x kdx
x C

formula №x

 
    . 

ln tg .
sin 2

du u
C

u
 

ln tg .
cos 2 4

du u
C

u

 
   

 


2 2

1
arctg .

du u
C

u a a a
 




2 2

1
ln .

2

du u a
C

u a a u a


 

 


2

2 2 2 2
arcsin .

2 2

u a u
a u du a u C

a
    

2

2 2 2 2 2 2
ln .

2 2

u a
u a du u a u u a C      

sh ;
2

u u
e e

u




 ch ;
2

u u
e e

u





sh

th ;
ch

u
u

u


ch
cth .

sh

u
u

u


, ,u kx u x b u kx b    

 
3

5 2x dx cos 6 xdx 2
sin 9

dx

x


7 3x
e dx




8 9

dx

x 


 
2

2 4

dx

x  


 
2

9 5 1

dx

x 
  

6 9
2 tg 7 3

x
x x dx 
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d) 7 3 7 3
7 3; 7, 1

3 7

x x
u x k

e dx e C
formula №

 
  

   . 

e) 
8 3; 8, 1

ln 8 3
28 3 8

u x kdx
x C

formula №x

  
   


 . 

f) 
2

2; 2, 1 2
arctg

18( 2) 4 2 2

u x adx x
C

formula №x

    
   

   
 . 

g) 
2

5 1; 3, 1 5 1
arcsin

9, 16 5 39 (5 1)

u x adx x
C

k form ula №x

    
   

   
 . 

h) We apply Properties 6.4, 6.5, 6.6 ([1], P. 221) and formulas 1, 3 and 8 of 

table of basic integrals 

 7 9 2
2 1 3

ln cos 7
7 7 ln 3

x
x

x C



    .
 

 

11.2. Basic methods of integrating indefinite integrals:  

method of direct integration 
 

Calculating integrals with the help of the main Properties (Properties 6.1 – 

6.6, ([1], P. 221)) of the indefinite integral, algebraic transformations of integral 

expressions and the table of integrals is called direct integration. 

Example 11.2. Find  . 

The solution. 

 

, 

2 2 3

1 1
3 by property 4 3I x dx № x dx x C      , 

2 22

1
11 tg 5

cos 5 5

dx
I formula № x C

x
      , 

 3 32

18;4
2 arctg 2 5

21 (2 5)

formula №dx
I x C

kx
    

 
 . 

 
6 9 6 9

2 tg 7 3 2 tg 7 3
x x

x x dx x dx xdx dx        

 

2

22

1 4
3

cos 5 1 2 5
x dx

x x

 
  

   



 

2

22

1 4
3

cos 5 1 2 5
I x dx

x x

 
    

   



 

2

2 1 2 32

4
3

cos 5 1 2 5

dx dx
x dx I I I

x x
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Finally we have 

. 

Example 11.3. Find the integral . 

The solution. When integrating trigonometric expressions, identities are used: 

2 2
sin cos 1x x  ;  2

sin (1 cos 2 ) 2x x  ;  2
cos (1 cos 2 ) 2x x  ; 

2 2
tg sec 1x x  ;  2 2

ctg cosec 1x x  , etc.; 

2

2 2 2 2

1
sin by property 5

cos sin cos sin

dx
I x dx №

x x x x

 
     

 
   

 

 

. 

Example 11.4. Find the integral  . 

The solution. 

 

 

1; 2; 1
arctg

18; 1

form ula №
x C

form ula № a x

  
    


. 

Example 11.5. Find the integral . 

The solution. 

 

   
3

1 2 3

1
tg 5 2 arctg 2 5 ,

5
I x x x C C C C C       

 
2 2 2

cos sin sinx x x dx
 

 

2 2

2

2 2

cos sin 1 cos 2
sin

cos sin 2

x x x
x dx dx dx

x x

 
   


  

2 2

1 1 1
cos 2 ctg tg

sin cos 2 2 2

dx dx
dx x dx x x x

x x
           

1 1 1
sin 2 2 ctg 2 sin 2

2 2 2 4

x
x C x x C       

2

2 4

1 2 x
dx

x x






 
 

2 2 2

2 2

2 2

2 4 2 2

1 2 1

1 2 1 2
1 ,

1

1 1

x x x

x x a b
I dx dx x x

x x x x ab

a b

ab ab b a

    

  
       

 

   

 

 

 

 

   

2 2 2 2

2 2 2 2 2 2 2 2

1 1

1 1 1 1

x x x dx x dx dx dx
dx

x x x x x x x x

  
     

   
    

 2 3 2 2 3
x x x

dx


  

3 2 2 3 3 2 2 3

2 2 2

x x x x

x x x
I dx dx
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. 

 

11.3. The variable replacement method: entering  

the function under the sign of the differential 

 

Before studying this material, you need to repeat the table of derivatives. 

The specified method is based on the invariance property of the indefinite 

integral and on the definition of the first differential of the function. 

Recall that the first differential of an arbitrary differentiable function 

( )y x  is found using the formula  

Let the sought integral have the form  If for the integral function 

( )y g x  it is possible to choose such a differentiating function such that 

 and the function , in turn, has a simple (for example, 

tabular) original  then the given integral takes the form 

                              (11.1) 

and, taking into account the introduction of the function  under the sign of 

the differential, is integrated as follows: 

. 

When applying this method, the following formulas for differentials, 

which are summarized in a table, are most often used. They need to be understood 

and remembered. Therefore, let  is a continuously differentiable function 

on the interval . Then the following relations for differentials hold (table of 

differentials): 

1.  . 

2.  .  

3.  . 

3 3 3
3 2 3 2 3 2

2 2 2

x x xx x

x x

a a
dx dx dx dx dx

b b

       
               

      
    

 
 

3
22 33 2 3

23 3lnln ln
2 2

x

u x
u a

x C a du C x C
a

         

    .dy d x x dx   

  .g x dx

       ,g x f u x u x  f u

  ,F u

      g x dx f u x u x dx 

 u x

             g x dx f u u x dx u x dx du x f u du F u C        

( )u u x

( )a,b

 
11

1
u du d u

 








2

1du
d

u u

 
   

 

 1

1

nn

n

du n
d u

nu
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4.   

5.  . 

6.  . 

7.  . 

8.  . 

9.  . 

10.  . 

11.  . 

12.  . 

13.  . 

14.  . 

15.   

16.  . 

17.  . 

18. Based on the properties of the differential, we have: 

a) ; b) ; where  arbitrary 

nubers. 

Example 11.6. Find the integral . 

The solution. 
2

2 2

7; 3; 2

3 ( 3) 2

form ula № u xxdx

x d x xdx

  
 

  
  

. 

 1
.

1

nnn
n

u du d u
n






( )
u u

e du d e

1
( )

ln

u u
a du d a

a


(ln )
du

d u
u



sin (cos )u du d u 

cos (sin )u du d u

2
(tg )

cos

du
d u

u


2
(ctg )

sin

du
d u

u
 

ln tg
cos 2

du u
d

u

 
  

 

ln tg
sin 2 4

du u
d

u

  
    

  

2 2
(arcsin ) arccos

du u u
d d

a aa u

 
    

 

2 2

1 1
arctg arcctg .

du u u
d d

a u a a a a

   
     

    

2

2
ln

du
d u u A

u A
  



2 2

1
ln

2

du u a
d

u a a u a




 

    df x d f x a      d kf x kdf x ,a k 

2
3

xdx

x 


 
2

2 2

2 2

31 2 1 1 1 1
3 ln ln 3

2 3 2 3 2 2 2

d xxdx du
u x u C x C

x x u
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Example 11.7. Find the integral . 

The solution. 

4

3 4

4 3

4; 2; 2 3
2 3

(2 3 ) 12

form ula № n u x
x x dx

d x x dx

  
  

  
  

 

. 

Example 11.8. Find the integral . 

The solution. 

4

3 3

4 3 38 4 2

14;

( ) 4 ;1 1 ( )
4

formula № u x
x dx x dx

du
du d x x dx x dxx x



  
   

   

 

Example 11.9. Find the integral .

 The solution. 

5 5

1; sin ; (sin )

(sin ) cos ; 5 sin

formula № u x d x du

d x xdx x u


  

  
   

= .
 

Example 11.10. Find the integral . 

The solution. 

; 

2

1 22

3; 1 4 ; 2

(1 4 ) 81 4

form ula № u x nxdx
I

du d x xdxx

  
  

   
  

3 4
2 3x x dx

   
4 3 4 41 1 1

2 3 12 2 3 2 3
12 12 12

x x dx x d x u du            

 

3

1 2
3

3 42
1 1 2 1

2 3
312 12 12 3 18

2

u
u du C u C x C           




3

8
1

x dx

x


 

 

 

43

2 2 2
4 4

1 4 1 1
.

4 4 4 11 1

d xx dx du

ux x

   
 

    
41 1

arcsin arcsin .
4 4

u C x C   

5

cos

sin

xdx

x


5

cos

sin

xdx

x


4

5

4

1

4 4 sin

u
u du C C

x




    




2

2

arcsin 2

1 4

x x
dx

x






2 2

1 2
2 2 2

arcsin 2 arcsin 2

1 4 1 4 1 4

x x xdx x
I dx dx I I

x x x
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; 

2

2
2

2

1 14; arcsin 2 ;
arcsin 2

2
(arcsin 2 ) ; 21 4

1 4

formulas № and u x
xdx

I dx
du d xx

x





  
  



  

3 3

2 2 2

2 2
2

1 2 1 1 arcsin 2
arcsin 2 arcsin 2 (arcsin 2 )

2 2 2 6 61 4

dx u x
x xd x u du C C

x

      


   . 

Finally we have: 

. 

 

11.4. The method of replacing the variable:  

subtracting the function from the sign of the differential 

 

The essence of this method is to introduce a new integration variable 

instead  

Theorem. Let  is the primitive function  on the interval , i.e.: 

 

and let the function  be defined and differentiable on the interval , and 

the set of values  of this function is contained in the set , i.e. . 

Then the variable replacement formula is valid 

                             (11.2) 

Remark 11.1. After finding the indefinite integral by the variable 

replacement method, it is necessary to move from the new variable  (or ) to 

the old variable . 

Remark 11.2. Change of variable is not applicable for every integral. It 

should be noted that the choice of the correct replacement of the variable, which 

leads to the goal most quickly, is largely determined by the experience of the 

researcher. 

Example 11.11. Find the integral . 

The solution. It is often necessary to introduce a new variable instead of 

roots. Let’s replace  with a new variable , as a result we get: 

 
2

2

1
2 2

1 41 8 1 1 1 1
2 1 4

8 8 8 8 41 4 1 4

d xxdx du
u C x C

ux x


             

 
  

 
3

2

1 2 1 2

1 arcsin 2
1 4 ,

4 6

x
I I I x C C C C        

.x

( )F x ( )f x P

( ) ( ) ,f x dx F x C 

( )x t
1

P

1
( )P P

1
( )P P 

   ( ) ( ) ( ) .f t t dt F t C    

t u

x

3 5

xdx

x  


2
3x t  t
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11.5. Method of integration by parts 

 

Let  and  be continuously differentiable functions on some 

interval. The formula for integration by parts has the form 

.                                         (11.3) 

Formula (11.3) shows that the calculation of the integral  is reduced to the 

calculation of the integral , which can be simpler than the given one, or even 

tabular. The resulting formula is used in those cases when the integrand expression 

 can be represented in the form . At the same time, it should be borne in 

mind that the function  should include factors that are simplified during 

differentiation. As a rule, the integral expression, which is the product , can be 

factored  and  in several ways. However, the integral function through  and  

must be represented so that the integral  is simpler than the integral . 

Let’s consider the main types of integrals, which are convenient to find by 

the method of integration by parts. 

1. If the integral expression is the product of an exponential or 

trigonometric function by a polynomial, then the polynomial must be taken as the 

function , and the remaining expression as . These are integrals of the form: 

, 

where Pn(x) is a polynomial of degree , and k is a real number. 

2. If the integral expression contains the product of a logarithmic or inverse 

trigonometric function by a polynomial, that is, the integrals have the form: 

, 

 
2 3

2

3, 2 , 3
2

53 5 3 , 3.

x t dx t dt t t dtx dx

tx x t t x

   
  

     
 

3

2 23 140 140
5 28 2 5 28

5 5 5

t t
t t t t dt

t t t

  
          

   


2
2 10 56 280

5

dt
t dt t dt dt

t
    


   

   
3 2

32
2 10 56 280 ln 5 3 5 3

3 2 3

t t
t t C x x          

56 3 280 ln 3 5 .x x C     

( )u u x ( )v v x

udv uv vdu  

udv

vdu

( )f x dx udv

( )u x

udv

u dv u dv

vdu udv

u dv

( ) ; ( ) sin ; ( ) cos
kx

n n n
P x e dx P x kxdx P x kxdx  

n

( ) ln ; ( ) arcsin ; ( ) arccos ; ( ) arctg
n n n n

P x xdx P x xdx P x xdx P x xdx   
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then the function  should be taken as the logarithmic function, or the inverse of 

the trigonometric function, and as  the expression , where  is a 

polynomial, i.e. . 

3. Sometimes the formula for integration by parts has to be applied several 

times. To find integrals of the form: 

, , , 

where  is a polynomial of degree , it is necessary to apply the formula for 

integration by parts as many times as the degree of the polynomial. At the same 

time, the function  is taken as a power function each time. 

4. In some cases, repeated application of the formula for integration by parts 

leads to linear equations relative to the desired integral. Solving this equation 

gives us the required integral. Such integrals include the following: 

, , , , 

where ,  – are real numbers. 

Remark. Note that when finding the function  by differential , it is 

assumed that the constant , since this constant does not affect the final result. 

Indeed, by substituting  into the formula for integration by parts, we obtain 

 

Let’s consider a number of examples. 

Examples 11.12. 

1.  

. 

2. . 

3.  

. 

u

dv ( )
n

P x dx ( )
n

P x

( )
n

dv P x dx

( )
kx

n
P x e dx ( ) sin

n
P x kxdx ( ) cos

n
P x kxdx

( )
n

P x n

( )u x

sin
mx

e nxdx cos
mx

e nxdx sin(ln )x dx cos(ln )x dx

m n

v dv

0C 

v C

( ) ( ) ( )ud v C u v C v C du       udv uv Cu vdu Cu     

.udv uv vdu   

2 1; 2
(2 1) sin

sin ; sin cos

u x du dx
x xdx

dv xdx v xdx x

  
  

   




(2 1) cos ( cos )2 (2 1) cos 2 sinx x x dx x x x C         

3

4

3 3

ln ;

ln

;
4

dx
u x du

x
x xdx

x
dv x dx v x dx

 

 

  





4

4 41 1 1
ln ln

4 4 4 16

dx x
x x x x C

x
   

2

1
arcsin ;

arcsin 1

;

u x du
xdx x

dv dx v dx x

 
 

  





 
1

2

2

2

2 2

1 (1 )
arcsin arcsin arcsin 1

21 1

xdx d x
x x x x x x x C

x x
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4.

 

 

1 1
cos 2 cos 2 let's re-apply integration by parts

2 2

x x
e x e xdx      

 

We have:  , 

or  . 

We have obtained an equation from which we determine the required 

integral : 

;   

Finally, we get:  

 

Tasks for classroom and independent work 

 

I. Find indefinite integrals by direct integration or change of variable 

method: 

11.1.  .    11.2.  . 

11.3.  .   11.4.  . 

11.5.  .    11.6.  . 

11.7.  .    11.8.  . 

11.9.  .    11.10.  . 

11.11.  .               11.12.  . 

;

sin 2 1
sin 2 ; cos 2

2

x x

x

e u du e dx

I e xdx
xdx dv v x

 

  
  



;
1 1 1

cos 2 sin 2 sin 2 .1
2 4 4cos 2 ; sin 2

2

x x

x x x

u e du e dx

e x e x e xdx
dv xdx v x

 

    
 



1 1 1
sin 2 cos 2 sin 2 sin 2

2 4 4

x x x x
e xdx e x e x e xdx    

1 1 1
cos 2 sin 2

2 4 4

x x
I e x e x I   

I

1 1
(sin 2 2 cos 2 )

4 4

x
I I x x e   

5 1
(sin 2 2 cos 2 ) .

4 4

x
I x x e 

1
sin 2 (sin 2 2 cos 2 ) .

5

x x
e xdx x x e C  

1 1
2 5

10

x x

x
dx

 


 2 2 2

dx

a x b


5
2 6(1 ) (arctg )

dx

x x 
 x x

dx

e e





ln ln(ln )

dx

x x x


(1 )

dx

x x


2 4sin

dx

x ctgx
 2 2

1 arcsin

dx

x x 


2

( 3)

3 4 4

x dx

x x



 


4 sin
cos

x
e x dx 

2

4

1

1

x
dx

x






ln

1 ln

xdx

x x
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11.13.  .              11.14.  . 

11.15.  .    11.16.  .  

11.17.  .    11.18.  . 

11.19.  .              11.20.  . 

11.21.  
2

8 17
x x

dx

e e 
 .                                11.22.  

2

( 1)

( 1)

x

x

e dx

e




 . 

 

II. Find indefinite integrals by integration by parts: 

 

11.23.  .    11.24.  . 

11.25.  .    11.26.  . 

11.27.  .    11.28.  . 

11.29.  .             11.30.  . 

11.31.  .              11.32.  . 

11.33.  
4 2

ln( 1)x x dx .                               11.34.  
3

ln( 4)
x x

e e dx . 

 

Answers and instructions 

 

11.1. . 11.2. . 

11.3. . 11.4. . 

11.5. . 11.6. .        11.7. .  

11.8. . 11.9. .  

11.10. . 11.11. .    

6 5

sin

cos

xdx

x
 sin 8 cos 6x xdx

2

5 2

x dx

x  


ch

dx

x


2

( 3)

6 10

x dx

x x



 


2

2

x dx

x


1

arctg x dx

xx



 2

( 1)

1

x dx

x x



 


2 4
( 1)

x
x e dx arccos 3xdx
5

3 lnx xdx arctg 2 xdx
2

cos 3
x

e xdx sin(ln )x dx
2

( 2 3) cos 2x x xdx 
5

arctgx xdx

2

arcsin 2

1 4

x x
dx

x
 2

cos

xdx

x


2 5 2

ln 5 5 ln 2

x x

C

 


  
1

ln
2

ax b
C

ab ax b






1
66(arctg )x С arctg

x
e С

ln ln(ln )x С 2 arctg x С
34

4

3
ctg x C 

1

arcsin
C

x
 

21 7 1
3 4 4 arcsin

4 4 2
x x x C

 
      

 

4 sin1

4

x
e С

2
1 1

arctg
2 2

x
С

x
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11.12. . 11.13. .   

11.14. .   

11.15. .   

11.16. . 

11.17. .   

11.18. . 11.19. .  

11.20. .  

11.21. 
2

4 arctg( 4) ln[( 4) 1]

17 34

x x
x e e

C
   

  .   

11.22. 
2

ln 1
1

x

x
x e C

e
   


. 

11.23. .   

11.24. . 11.25. .   

11.26. . 11.27. .   

11.28. .  

11.29. .   

11.30. .  

11.31. .   

11.32. .   

11.33. 

5 2 3 5ln 11 1 2 2 2
ln

5 1 5 5 15 25

x xx x x x
C

x


    


. 

11.34. 
2 3 3

2 16 ( 64) ln( 4)

3 9

x x x x x
e e e e e

C
   

  . 

2
(ln 2) 1 ln

3
x x C  

6
6 cos x С 

1 1
(cos 2 cos14 )

4 7
x x C  

5 4 3 22 28
28 162 324 ln 2 ,

5 3
t t t t t t C       5t x 

2 arctg
x

e С

21
ln( 6 10) 6 ( 3)

2
x x arctg x C    

22
(3 8 32) 2

15
x x x C    

2
(arctg )x С

2 21 1
1 ln 1

2 2
x x x x x C

 
        

 

4

2 1 1
( 1) ( 1)

4 2 8

x
e

x x C
 

     
 

21
arccos 3 1 9

3
x x x C  

8
3

3
(ln 3 8)

8
x x С 

21
arctg 2 ln(1 4 )

4
x x x C  

2

(3 sin 3 2 cos 3 )
13

x
e

x x C 

 sin(ln ) cos(ln )
2

x
x x C 

21 1
( 2 3) sin 2 ( 1) cos 2 sin 2

2 2
x x x x x x C

 
      

 

ln cosxtgx x C 

5 3

61
( arctg arctg )

6 5 3

x x
x x x x C    

21
(2 1 4 arcsin 2 )

4
x x x C  
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PRACTICAL LESSON  12 

Proper and improper rational fractions. 

Technique of integration of rational fractions 
 

First, let’s give some definitions. 

Definition. A fractional rational function ( )R x  is a function equal to the 

ratio of two polynomials: 

1

0 1 1

1

0 1 1

( ) ...
( )

( ) ...

n n

n n n

m m

m m m

P x a x a x a x a
R x

Q x b x b x b x b









   
 

   
,                     (12.1) 

where ,m n  – are natural numbers; ,
i j

b a  – are real numbers, 0, ,i m  0, .j n  

Definition. If ,n m  then ( )R x  is called a proper rational fraction, if 

,n m  ( )R x  is an improper fraction. 

Any improper fraction by dividing the numerator by the denominator can be 

represented as the sum of some polynomial and a proper fraction: 

( )( )
( ) ,

( ) ( )

pn

n m

m m

R xP x
W x

Q x Q x


                                    (12.2) 

where ( ), ( )
n m p

W x R x


 – are polynomials of the appropriate degree, 
( )

( )

p

m

R x

Q x
– is a 

proper fraction, p m . 

For example, 
4

2

4

3 1

x

x x



 
 – an improper fraction. Dividing its numerator by the 

denominator (according to the rule of dividing polynomials by a “corner”), we get: 

4

2

2 2

4 33 14
3 10 .

3 1 3 1

x x
x x

x x x x

  
   

   
 

Conclusion. Since any polynomial is easily integrated, the integration of 

rational functions is reduced to the integration of proper fractions (formula (12.2)). 

Next, we will consider simple integrals from an improper rational fraction. 

Examples 12.1. Find the integrals: 

a) 
2

2

12

3

x
dx

x




 ; 

b)
3

2

x dx

x 
 . 

The solution. 

a) Let’s take the whole part of the integral function. To do this, divide the 

numerator by the denominator by dividing a polynomial by a polynomial, or add 
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and subtract a number 3  from the numerator and consider the sum of the 

corresponding fractions. As a result, we have: 

2 2

2 2 2 2

3 3 12 3 15 15
1

3 3 3 3

x x

x x x x

   
   

   
; 

2

2 2 2

12 15 15 3
1 15 ln

3 3 3 2 3 3

x dx x
dx dx dx x C

x x x x

  
       

    
    . 

b) In the second example, we divide the numerator by the denominator with 

a “corner”. As a result, we get a polynomial of the second order (as a whole part) 

and a proper fraction: 

3

2

x dx

x 
  

3

3 2 2

2

2 2

_ | 2

2 2 4

_ 2
8

2 4 2 4
2

_ 4

4 8

8

x x

x x x x

x

x x x x dx
x

x

x



  



 
       

  





  

3

2 2
2 4 8 4 8 ln 2

2 3

dx x
x dx xdx dx x x x C

x
         


    . 

 

12.1. Integration of a proper rational fraction. 

Decomposition of a proper rational fraction  

into elementary fractions 
 

Before studying this material, it is advisable to repeat actions on algebraic 

expressions and factoring polynomials. First, we will give the definition of 

elementary fractions. 

Definition. Elementary (simple) fractions are called proper rational 

fractions of the following four types: 

1)
A

x a
;                                    2)

 
 , 2, 3,

n

A
n

x a



; 

3)
2

M x N

x px q



 
;                             4)

 
 

2
, 2

n

M x N
n

x px q




 
,                (12.3) 

where , , , , ,A a M N p q  are real numbers, and the trinomial 
2

x px q   has no 

real roots, i.e. 
2

4 0p q  . 
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Now consider a proper rational fraction 
 

 

p

m

R x

Q x
, ( p m ). For example, the 

fraction
2

5

1

2 3

x

x x



 
 is proper because 2 5 .p m    

Let’s formulate the Basic Theorem on the decomposition of a proper 

fraction into elementary ones. 

Basic Theorem. If the denominator of a proper rational fraction 
 

 

p

m

R x

Q x
 is 

factored   2m            : 

         
2 2

0
( )

m
Q x b x a x b x с x px q x lx s

   
              , 

then this fraction can be presented as a sum of elementary fractions: 

   
1 2

2

( )

( )

p

m

R x A A A

Q x x a x ax a




     

 
 

           
1 2 1 2

2 2

BB B C C C

x b x b x c x cx b x c

 

 
         

    
 

   
1 1 2 2

22 22

M x NM x N M x N

x px q x px qx px q

 



 
     

    
 

   
1 1 2 2

22 22

L x S L x S L x S

x lx s x lx sx lx s

 



  
   

    
.              (12.4) 

Definition. Expression (12.4) is called the decomposition of a proper 

rational fraction into elementary fractions. 

Numbers 
1 2 1 2 1 1 1 1
, , , , , , , , , , , , , , , , , ,A A A C C C M N M N L S

   

,L S
 

 are some unknown real numbers (undefined coefficients), which can be 

found using two main methods. 

A. The method of comparing coefficients with the same powers. We will 

present the algorithm of its application. 

1. Multiply both parts of expression (12.4) by ( )
m

Q x . As a result, we get 

two identically equal polynomials – a known polynomial ( )
p

R x  and a polynomial 

with unknown (undefined) coefficients 
1
, , .A S


 

2. Equate their coefficients with the same powers x  and write 
1
, , .A S



own the system of linear algebraic equations (SLAE) with respect to the unknown 

coefficients. 

3. Solve the obtained SLAE by finding the unknowns 
1
, , .A S
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In addition to the method of comparing coefficients, the method of 

individual values of the argument is also used. 

B. The method of individual values of the argument. The algorithm of its 

application is as follows: 

1. Multiply both parts of expression (12.4) by ( ).
m

Q x  As a result, we get 

two identically equal polynomials: a known polynomial ( )
p

R x  and a polynomial 

with unknown coefficients 
1
, , .A S


 

2. Give the variable x  specific values as many times as there are unknown 

coefficients in the indicated equality. As a result, we will get SLAE relative to the 

unknown coefficients 
1
, , .A S


 

3. Solve the obtained SLAE by finding the unknowns 
1
, , .A S


 

Remark 12.1. SLAE is greatly simplified if the variable x  is given the 

value of the roots of the denominator ( ).
m

Q x  

Example 12.2. Express a fraction 
   

8 6

1 3

x

x x x

 

   
 in terms of elementary 

fractions. 

The solution. 

   

8 6
;

1 3 1 3

x A B C

x x x x x x

 
  

     
 

       8 6 1 3 3 1 .x A x x Bx x Cx x            

Let’s use the second method. If we put in this identity: 

If 0x  , then  6 3 2 ,A A    

If 1x  , then  2 2 1,B B      

If 3x  , then 18 6 3.C C       
So, we have the desired schedule: 

   

8 6 2 1 3
.

1 3 1 3

x

x x x x x x

 
  

     
 

Remark 12.2. In practical application, the method of individual values of 

the argument has some advantages over the comparison method. Its 

implementation leads to the construction and solution of sparse SLAE with a 

smaller volume of calculations compared to the method of uncertain coefficients. 

However, in well-known manuals and textbooks on higher mathematics , the 

application of this method is considered only for the case of real roots of the 

denominator ( )
m

Q x . In this training course, the method of individual values of 

the argument is generalized to the case of complex roots of the denominator. 
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The first volume of the textbook “Mathematical Analysis” [1] provides 

educational material on operations with complex numbers, sufficient for 

understanding and working out the generalized method of individual values of the 

argument, including the separation of the imaginary part of the complex number 

from the real part. As a result of such separation, one complex equation gives rise 

to two equations with real coefficients. 

To illustrate the effectiveness of the generalized method of individual 

values of the argument for the case of complex roots of the denominator ( )
m

Q x , 

consider the following example. Recall that the imaginary unit is defined as 

follows: 2
1 0i   . 

Example 12.3. To represent a fraction 
   

3 2

2 2

2 3 10 9

1 2 5

x x x

x x x

  

   
 through 

elementary. 

The solution. Let’s find the roots of the denominator. All of them are 

complex numbers: , , 1 2 , 1 2i i i i     . So, we have a decomposition of the 

given fraction into the following elementary fractions with unknown coefficients 

, , ,A B C D : 

   

3 2

2 2 2 2

2 3 10 9
.

1 2 5 1 2 5

x x x Ax B Cx D

x x x x x x

    
 

      
 

Let’s multiply both parts of this identity by the original denominator  

   
2 2

1 2 5x x x    . After that, we equate the numerator of the given fraction to 

the numerator with unknown coefficients: 

     
3 2 2 2

2 3 10 9 1 2 5 ( )x x x x C x D x x Ax B          . 

Substitute in the identity instead of the value x  of the first root 
1

x i . As a 

result, we will get two equations with respect to two unknown coefficients A  and B : 

4 2 8; 1;
8 6 (4 2 )( )

4 2 6. 2.

A B A
i i A i B

B A B

   
      

   

 

Now we substitute the third root 
3

2 1x i   of the denominator into the 

identity: 

 
2 3 2

(2 1) 1 (2 1) 2(2 1) 3(2 1) 10(2 1) 9i C i D i i i           
 

. 

After equivalent transformations in this identity according to the rules of 

operations on complex numbers, we will again obtain two equations from which 
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we will find the unknown coefficients C  and D : 

1; 1;
4 10 2 4 12

10 2 12; 1.

D D
Di C D i

C D C

    
       

   

 

So, we have 
   

3 2

2 2 2 2

2 3 10 9 2 1
.

1 2 5 1 2 5

x x x x x

x x x x x x

    
 

      
 

Remark 12.3. Sometimes it is convenient to use a combined method, that 

is, to determine some of the unknown coefficients by giving the values of the 

roots of the denominator, and to determine others by the method of comparison. 

Example 12.4. Express the fraction 
   

2

2

2

1 1

x x

x x x

 

   
 in terms of 

elementary fractions. 

The solution. Let’s represent the given fraction in the form of elementary 

fractions with undefined coefficients: 

   

2

2 2

2

1 1 1 1

x x A B Cx D

x x x x x x

  
  

     
, 

or after multiplying by the denominator: 

         
2 2 2

2 1 1 1 1x x A x x Bx x x x Cx D           

     
2 3 2

2 .x x A B C x A C D x A B D x A                 

If 0x  , then  2 2A A     . 

If 1x  , then  4 2 2B B   . 

Comparing the coefficients at 3
x , we get: 0 0.A B C C      And 

finally, we find ,D by equating the coefficients at 2
:x  

1 1.A C D D        

So, we finally have 

   

2

2 2

2 2 2 1
.

1 1 1 1

x x

x x x x x x

 
   

     
 

We get the same result for C  and D  if we put in the identity x i . 
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12.2. Integration of elementary fractions 

 

Integrating elementary fractions (12.3) does not cause difficulties, so we 

will perform their integration without additional explanations. Let us consider the 

corresponding integrals. 

1. 
 

1
ln

d x aA
I dx A A x a C

x a x a


    

 
  . 

2. 
 

   
 

1

2

1

n

n

n

x aA
I dx A x a d x a A C

nx a

 

 
     

 
  . 

3. Consider the integral 
2

Mx N
dx

ax bx c



 
 . This integral reduces to an integral 

of the form: 

   
3 32 2 2

2

1 1 1
,

M x N dx M x N dx M x N M x N
dx I де I dx

b cax bx c a a x px q a x px q
x x

a a

   
   

     
 

    . 

2 2 23 2
2

2

2
2 4 4 2 4

p
t xM x N M x N

I dx dx
p p p p p

x x q dx dtx q

  
   

          
 

   

1 22 2 2

2 2 2

2
.

2

4 4 4

p
M t N

t dt p dt
dt M N M J J

p p p
t q t q t q

 
  

   
       

      
          
     

    

The first of the last two integrals 
1

J  is calculated as follows: 

2

2

2

2

1 2 2

2 2

2 4
ln

2 2 2 4

4 4

p
d t q

M tdt M M p
J t q C

p p
t q t q

 
  

 
      

   
      
   

 

2
ln .

2

M
x px q C     

Since 
2

4 0p q  , then the second integral 
2

J  is calculated according to the 

table in the form of a function arctg ( )u x . 
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Example 12.5. Find the integral: 
 

2

4 3

2 12 10

x dx

x x



 
 . 

The solution. 

   

 

2 2

2

2 2

22

;4 3 4 31
2 4

2 12 10 2 6 5
6 5 3 5 9

p p
x px q x qx dx x dx

x x x x
x x x

 
        

   
   

     

 

 

 

 
2 2 2

3
4 3 4 3 31 1 1 4 12 3

3
2 2 4 2 43 4

x t
x dx t t

x t dt dt
t tx

dx dt

 
    

      
  



    

2 2 2 2 2

1 4 9 1 4 9 2 9

2 4 2 4 2 4 4 2 4

t t dt t dt
dt dt dt

t t t t t


     

    
      

 
 

2

2 2

2

4 9 1 2 9 2
2 4 ln ln 4 ln

4 2 2 2 2 8 2

d t t t
tdt d t t C

t t t

  
          

   
  

 
2 29 3 2 9 5

ln 3 4 ln ln 6 5 ln
8 3 2 8 1

x x
x C x x C

x x

  
         

  
. 

4. The integral of the form 
 

4
2

n

M x N
I dx

x px q




 
 , (

2
4 0p q  , 2n  ) 

reduces to two integrals 

 

 

   

2

2 2 22
n n n

d x px q pdxMx N M Ndx
dx

x px q x px q x px q

  
  

     
  

 

 
 

1
2

2

1
,

2 1 2

n

n

M M p dx
x px q N

n x px q

  
     

    


 

the first of which is calculated directly, and the second is reduced to the following 

integral by substitution 
2

p
t x  : 

2 2
( 1, 2, 3,...)

( )
n n

dt
I n

t a
 


 . 

We will show that there is the following recurrent formula for calculating 

such integrals for different natural values n : 

1 2 2 2 2

1 2 1 1
( 1, 2, 3,...)

2 ( ) 2
n nn

t n
I I n

na t a n a



  


,            (12.5) 

where 
1 2 2

1
arctg

dt t
I C

t a a a
  


 . 
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Indeed, integrating the integral 
n

I  by parts, we get: 

2 2 2 2 1

1 2
, , ,

( ) ( )
n n

ntdt
u dv dt v t du

t a t a


    
 

, 

2 2 2

2 2 2 2 1
2

( ) ( )
n n n

t t a a
I n dt

t a t a


 
  

 
  

2

2 2 2 2 2 2 1
2 2

( ) ( ) ( )
n n n

t dt dt
n na

t a t a t a


  
  

  ;   2

12 2
2 2

( )
n n nn

t
I nI na I

t a


  


, 

or in this way 

1 2 2 2 2

1 2 1 1

2 ( ) 2
n nn

t n
I I

na t a n a



  


;  1; 2; 3;n  . 

Let’s find the integrals 
2

I  and 
3

I  for 1n   and 2n   in the formula (12.5): 

2 2 2 2 3

1 1
arctg

2 2

t t
I C

a t a a a
  


,  

 
23 2 4 2 2 52 2

1 1 3 3
arctg

4 8 8

t t t
I C

a a t a a at a
   


. 

Returning to the old variable in the formula 
2

p
t x  , one can find the final 

results for all integrals 
n

I . 

 

12.3. The technique of integrating  

a proper rational fraction 
 

Let it be necessary to find the integral 
( )

( )

n

m

P x
dx

Q x
 . If the fraction 

( )

( )

n

m

P x

Q x
 is 

improper, then this integral can be presented as the sum of the integral of the 

polynomial and the proper rational fraction: 

( )( )
( )

( ) ( )

pn

n m

m m

R xP x
W x dx dx

Q x Q x


    . 

The integral of a polynomial ( )
k

W x  is found directly, and the integral of a 

proper rational fraction is reduced to integrals of elementary fractions using 

formula (12.2). 

Conclusion. So, we established that the integration of an arbitrary rational 

function (fraction) is reduced to the integration of a polynomial and a finite 
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number of simple fractions, the integrals of which are expressed through 

rational, logarithmic, and inverse trigonometric functions. Thus, any rational 

function is integrated in elementary functions. 

Let’s consider the technique of integrating a proper rational fraction 

(examples 12.1 – 12.3) and an improper rational fraction (example 12.4). 

Examples 12.6. Find the following indefinite integrals: 

a) 
2 3

;
( 1)( 2)

x
dx

x x x



 
   b) 

2
;

( 1)( 1)

x dx

x x 
   c) 

2
;

( 1)( 1)

x dx

x x 
  

d) 
5

3

2

1

x
dx

x




 ;  e) 

3 2

4 2

2 8 1

5 4

x x x
dx

x x

  

 
 . 

The solution. 

a) 
2 3

( 1)( 2)

x
dx

x x x



 
 . In accordance with formula (12.1), the breakdown of 

the sum of elementary fractions has the form: 

2 3
.

( 1)( 2) 1 2

x A B C

x x x x x x


  

   
 

Reducing the fractions to a common denominator (it coincides with the 

denominator of the given fraction), and equating the numerators of the obtained 

and given fractions, we will have the identity: 

2 3 ( 1)( 2) ( 2) ( 1) .x A x x Bx x C x x         

Let’s find the coefficients by the method of individual values of the 

argument. Let’s substitute successively instead of x  its individual values 

1 2 3
0, 1, 2x x x    in the above identity. We obtained the following system of 

linear equations: 3 2 ,A   1 ,B    1 2 .C   From which it follows that 

3 2 , 1, 1 2 .A B C     Therefore, the required integral will have the form: 

2 3

( 1)( 2)

x
dx

x x x




 


3 2 1 1 2 3
ln

1 2 2
dx x

x x x

 
     

  


1
ln 1 ln 2 .

2
x x C     

b) 
2

( 1)( 1)

x dx

x x 
 . The decomposition of a fraction 

2
( 1)( 1)

x

x x 
 into the 

sum of elementary fractions looks like this: 

2 2
.

( 1)( 1) 1 ( 1) 1

x A B C

x x x x x
  

    
 

Let’s reduce the fractions in both parts of the equation to a common 

denominator. As a result, we will have: 

2 2
( 1) ( 1) ( 1).x A x B x C x       
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With the values 1x   and 1x    we find that 4 1, 1 2A B    , that is 

1 4 , 1 2 .A B    

To calculate the value C , we equate the coefficients in the identity with 2
.x  

We obtain the equation 0 ,A C  from which we find: 1
4

C   . 

Now it is possible to integrate the given rational function: 

 

 

c) 
2

( 1)( 1)

x dx

x x 
 . The decomposition of the fraction into elementary units 

is as follows: 

 

So, 
2

( 1) ( )( 1)x A x Mx N x     . 

When 1x   we get 1 2 A , that is, 1
2

A  . Further:  

From here we get: 1 1,
2 2

M N   . As a result, we have: 

 

 

d) 
5

3

2

1

x
I dx

x





 . An improper fraction is given under the sign of the 

integral, so first we will allocate its whole part by performing division 
5 3

( 2 ) : ( 1)x x  .  

As a result, we get a polynomial of the second degree and a proper fraction: 

 

The decomposition of a proper fraction into elementary units looks like this: 

; 

. 

2 2

1 4 1 2 1 4

1 1( 1)( 1) ( 1)

x dx
dx dx dx

x xx x x


   

   
   

1 1 1 1 1 1 1 1
ln 1 ln 1 ln .

4 2 1 4 4 1 2 1

x
x x C C

x x x


         

  

2 2
.

1( 1)( 1) 1

x A M x N

xx x x


 

  

2

0

0,
.

0

x A M

A Nx

  


  

2 2

1 2 1 2 1 2

1( 1)( 1) 1

x dx x
dx

xx x x

  
   

   
 

21 1
ln 1 ln 1

2 4
x x    

1
arctg .

2
x C

5 2
2

3 3

2 2
.

1 1

x x
x

x x

 
 

 

2

3 2

2

11 1

x A Bx C

xx x x

 
 

  

           
2 2 2

2 1 1x A x x Bx C x A B x A B C x A C                
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We will use the combined method of finding coefficients , ,A B C . If 1x  , 

then 1A  . Equating the coefficients at 
2

x , we get the equation: 1A B    

where 0B  . Equating the coefficients at 
0

x , as a result we will have the 

following equation: 2 1A C C     . 

Now you can integrate: 

 

. 

c) 
3 2

4 2

2 8 1

5 4

x x x
dx

x x

  

 
 . The integral function is a proper fraction whose 

denominator has only imaginary roots. Let’s decompose this fraction into 

elementary fractions (intermediate transformations are not shown): 
3 2

4 2 2 2

2 8 1 2 1

5 4 1 4

x x x x

x x x x

  
 

   
. 

Now you can integrate the given function: 

3 2

4 2 2 2

2

2 2

2 8 1 2 1

5 4 1 4

2 1
ln( 1) arctg .

1 4 2 2

x x x x
dx dx

x x x x

x dx x
dx x C

x x

    
   

    

 
      

   

 

 

. 

 

Tasks for classroom and independent work 

 

Find the following indefinite integrals: 

12.1. .    12.2. . 

12.3. .     12.4. . 

12.5. .     12.6. . 

3
2

2
2

1 1
ln 1

1 31 31

4 4

x dx
I x dx x

x x x
x x

 
        

   
  

 

3 3

22

1

2 2 12
ln 1 ln 1

3 3 3 31 3

2 2

d x
x x x

x x arctg C

x

 
 

 
         

  
      

   



2
4

( 1)( 2)( 3)

x x
dx

x x x

 

  


2

3 2

2 1

5 6

x
dx

x x x



 


2

2 2
( 3 2)

x dx

x x 


2

2 3

3 3

( 1)( 1)

x x
dx

x x

 

 


4

3 2

1

1

x
dx

x x x



  


4

6

1

1

x
dx

x
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12.7. .     12.8. . 

12.9. .               12.10. . 

12.11. 
2

4

1

1

x
dx

x




 .                                             12.12. 

2 2

2 3

( 1) ( 2)

x
dx

x x



 
 . 

12.13. 
4 3 2

2 2

2 5 1

( 1)

x x x
dx

x x

  


 .                                  12.14. 

3 2

2 2

2 10 1

( 4)( 1)

x x x
dx

x x

  

 
 . 

12.15. 
2 4

( 1)

dx

x 
 .                                              12.16. 

9

4 2
( 1)

x dx

x 
 . 

 

Answers and instructions 

 

12.1. .   

12.2. .  

12.3. .   

12.4. . 

12.5. .   

12.6. . 

12.7. .   

12.8. .    

12.9. . 

12.10. .  

2

4 2

5 4

5 4

x x
dx

x x

 

 


5

3 2

1x
dx

x x x



 


2

2 2

5 6 9

( 1) ( 3)

x x
dx

x x

 

 


4

4

1

1

x
dx

x






5

2

( 1)( 3)
ln

( 2)

x x
C

x

 




1 7 17
ln ln 2 ln 3

6 2 3
x x x C     

2

5 6 1
4 ln

3 2 2

x x
C

x x x

 
  

  

2

2

1 1 7
ln

4 1 ( 1)

x
arctgx C

x x

 
   

  
 

2

2

1( 1)
ln

2 1

xx
arctgx C

x


  



31

3
arctgx arctgx C 

2

2

5 1
ln

6 4

x
arctgx C

x


 



3 2
2 2 1

ln
3 2 3 3

x x x
x arctg C


   

9 1

2( 3) 2( 1)
C

x x
  

 

1 1
ln

2 1

x
x arctgx C

x
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12.11. 

2
( 1)

arctg arctg
2 2

2

x x x

C

  
   

   
 .   

12.12. 
2

8 1 8 5
ln

27 2 9 ( 2)

x x
C

x x x

 
 

   
. 

12.13. 
2

3

2 arctg ln
1

x

x x C
x



  


.   

12.14. 
3 2

ln 1 arctg
2 2 1

x
x C

x

 
     

 
. 

12.15. 
5 3

2 3

15 40 33 5
arctg

48( 1) 16

x x x
x C

x

 
 


.   

12.16. 
6 2 2

4 2

1 2 3 3 1
ln

4 1 2 1

x x x
C

x x

  
  

  

. 
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PRACTICAL LESSON  13 

Integration of some irrational and trigonometric functions. 

Trigonometric substitutions. Euler substitutions 

 

13.1. Integration of some irrational functions 

 

We will consider the main types of integrals from irrational functions and 

show that in some cases they can be reduced to integrals from rational functions 

(that is, they are rationalized) by appropriate substitutions of variables. 

A. The integral of the form 

1

1

; ; ;

rr

s sax b ax b
R x dx

cx d cx d




 

     
   

     
 

 , 

where R  – is a known rational function; , , ,a b c d  – are constants; ,
i i

r s  – are 

positive integers, 1,i  , is reduced to the integral of the rational function of the 

new variable t  using the substitution  where the number m  – is the 

Least Common Multiple (LCM) of the denominators of the fractions 1

1

, ,
rr

s s





, 

i.e., m  LCM
1

( , , )s s


. Really: 

m

m

b d t
x

c t a

 


 
, 

1

2

( )

( )

m

m

mt ad bc
dx dt

ct a







. 

Therefore, x  and dx  are expressed in terms of rational functions from t , 

and each power of the fraction 
ax b

cx d




 will be expressed in terms of a whole 

power of t , then the integrand function will turn into a rational function from t . 

In particular, the integral of the form 
1

1; ; ;

rr

ss
R x x x dx




 
 
 

  is reduced to 

the integral of the rational function of the new variable t  by means of substitution 
m

x t , where 

m  LCM
1

( , , )s s


. 

Examples 13.1. Find integrals: 

a)          b)  

 

,
max b

t
cx d






4 3
;

4

x
dx

x 


6

3

1
.

1 1

x dx

x x
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The solution. 

a) Since LCM (2, 4) 4 , then 

 33

3 3

3

416 4 16
4 ln 4

3 3 4 3 3

d tt
t t C

t


      


  

b) Since LCM (2,3, 6) 6 , then 

 
4

1 1
6

1

t
dt

t

 





3 2 1
6 1

1
t t t dt

t

 
     

 


 

 

B. Integration of differential binomials. 

 

Definition. An expression of the form ( )
r q p

x a bx , where , ,r q p   are 

constant rational numbers and a  and b  – are arbitrary constant numbers, is 

called a differential binomial. 

Chebyshev’s theorem. The integral of the differential binomial 

( )
r q p

x a bx dx                                         (13.1) 

is expressed through the integral of rational functions with respect to the new 

variable, if: 

1) p  is an integer ( 0p  , or 0p  , or 0p  ) and the substitution 
s

x t  is 

performed, where s  is the lowest common denominator of the fractions r  and q ; 

2) 
1r

q


 is an integer 

1
,

1 1
0, 0 0

r r r

q q q

   
   

 

, and the substitution 

q m
a bx t  is made, where m  is the denominator of the fraction p ; 

41 2 2
3

3 4 334 3
4

4 444

x tx dx x t
dx t dt

x tdx t dtx


   

 
  

5

3
4

4

t
d t

t





5 3

5 2 2

2

| 4

4

4

t t

t t t

t



 



4 43 34 16
ln 4 .

3 3
x x C   

66

3 5

11

1 1 6

x tx dx

x x dx t dt

 
 

   


4
5

3 2
6 6

1

t t
t dt dt

tt t
 


 

4 3 23
2 3 6 6 ln 1

2
t t t t t C       

2 3 6 633
( 1) 2 1 3 1 6 1 6 ln 1 1 .

2
x x x x x C           
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3) 
1r

p
q


  is an integer 

1 1 1
0, 0, 0

r r r
p p p

q q q

   
      

 

 and the 

substitution q m
ax b t


   is made, where m  is the denominator of the fraction p . 

In addition, Chebyshev’s Theorem states that in other cases the integral of 

the differential binomial (13.1) cannot be expressed through elementary 

functions. 

Examples 13.2. Find integrals: 

a)  
2

5 33 1 .x x dx  

b) 
3

3 2 2(1 2 )x x dx


 . 

The solution. 

a)    
2

2
5 3 5 3 33

2
5, 3, ,

3
1 1

1
2

r q p

x x dx x x dx
r

Z
q

  

    


 
   

 

3 3

2

3 2 33 3

substitution of the 2nd type : 1

1 1

t x

x t dx t t dt


  

 

     

     
5 2 8 5

3 2 2 3 3 43 31 1 1
8 5

t t
t t t t dt t t dt C



            

   
8 5

3 33 3
1 1

1 1 .
8 5

x x C      

b) 
3

3 2 2

2

2

2

3 1
substitution of the 2nd type; 3; 2; ; 2;

2

(1 2 )
1

1 2 2 ;
2 2( 1)

m

r
r q p

q

x x dx
t tdt

x t m x dx

t




    

 


       



 = 

3

2 2 22
3

22 2

1 1 1 1 1 1

2 4 42( 1) 2 1 2

t tdt t x
t dt t C C

t tt x


    

          
   

  . 
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13.2. Integration of trigonometric functions 
 

Let’s establish some types of integrals from trigonometric functions that are 

integrated in a closed form. They include integrals of rational functions with 

respect to functions sin , cos , tg , ctg , sec , cosec .x x x x x x  

I. First, consider the general case in which the universal trigonometric 

substitution is used. 

Consider integrals of the form (sin , cos )R x x dx , where R   is a rational 

function with respect to sin x  and cos x . This function (and the integral with it) is 

always rationalized by the universal substitution tg
2

x
t . Really, 

2
2

2 tg
22sin ;

1
1 tg

2

x

t
x

x t
 




 

2
2

2
2

1 tg
12cos ;
1

1 tg
2

x

t
x

x t




 




 

2

2
2 arctg ; .

1

dt
x t dx

t
 


 

Thus, the universal trigonometric substitution has the form: 

tg ; 2 arctg ;
2

x
t x t 

  
2

2
sin ;

1

t
x

t



  

2

2

1
cos ;

1

t
x

t




   
2

2
.

1

dt
dx

t



 

Therefore, 

   
2

2 2 2

2 1 2
sin ; cos ; ,

1 1 1

t t dt
R x x dx R R t dt

t t t


 

  
   

    

where  R t
  is a known rational function from t . 

Remark. This substitution often leads to rational fractions with large 

powers, so in many cases other substitutions are used. We will list some of them. 

II. Consider partial cases of integrals of trigonometric functions, which are 

rationalized by other substitutions. 

1. Integrals of the form  1
sin cosI R x xdx   are rationalized by replacing 

the variable sin ; cos ;t x dt xdx 
2

arcsin ; .

1

dt
x t dx

t

 



 Then  1 1
.I R t dt   

2. Integrals of the form  2
cos sinI R x xdx   are rationalized by replacing the 

variable cos ; sin ;t x dt xdx    
2

arccos ; .

1

dt
x t dx

t

  



 Then  2 2
.I R t dt   
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3. Integrals of the form  3
tgI R x dx   are rationalized by replacing the 

variable 
2

tg ; arctg ; .
1

dt
t x x t dx

t
  


 Then  3 32

( )
1

dt
I R t R t dt

t
  


  . For 

example, the integral 7
tg xdx  is reduced to the integration of the following 

improper rational fraction: 
7

7

3 2
tg tg

1

t dt
I xdx t x

t
   


  . 

In these cases,      1 2 3
, ,R t R t R t  – the corresponding known rational 

functions from t . 

4. For integrals of the form  4
sin , cosI R x x dx  , the following 

substitutions are used: 

a) if ( sin , cos ) (sin , cos )R x x R x x   , that is, the function (sin , cos )R x x  is 

odd relative to sin x , then this integral is rationalized by substitution cos x t . 

b) if (sin , cos ) (sin , cos )R x x R x x   , that is, the function (sin , cos )R x x  is 

odd relative to cos x , then this integral is rationalized by substitution sin x t . 

c) if ( sin , cos ) (sin , cos )R x x R x x   , that is, the function (sin , cos )R x x  is 

even relative to sin x  and cos x  at the same time, then this integral is rationalized 

by substitution tg .x t  For example, the integral 
2 4

3 3sin cosx xdx
 

 . 

5. Depending on the numbers m  and n , integrals of the form 

5
sin cos

m n
I x dx   are found using the following substitutions: 

a) if n is a positive odd integer,then this integral is rationalized by 

substitution sin x t ; 

b) if m  is a positive odd integer, then this integral is rationalized by the 

substitution cos x t ; 

c) if m  and n  are even positive integers, then this integral is found using 

the formulas for decreasing the power: 

; 

d) if m  and n  are even integers, but at least one of them is negative, then 

this integral is rationalized by substitution tg .x t  The same substitution is used 

in the case when m  and n  are odd and negative integers. For example, such 

integrals are found using substitution tg x t : 
4 5 7 5 7

4 2

1 8

sin tg tg
tg (1 )

cos 5 7 5 7

x t t x x
I dx t x t t dt C C

x
            ;

 
2 2 2

2 3

1 tg
tg ln ln tg

sin cos 2 2

dx t t x
I t x dt t C x C

x x t


           . 

2 21 cos 2 1 cos 2
cos ; sin

2 2

x x
x x
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6. Integrals of the form 
7

sin sinI ax bxdx  , 
8

cos cosI ax bxdx   are 

calculated using the following “school” formulas: 

; 

; 

. 

Examples 13.3. Find Integrals: 

a)  

b)  

c)  

 d)  

 e) 4 5
sin cos ;x xdx  

 f) 
2 4

sin cos ;x xdx  

 g) sin 5 cos3 .x xdx  

The solution. 

a)  

 

 b)  

 

 

 
1

sin cos sin( ) sin( )
2

         

 
1

sin sin cos( ) cos( )
2

         

 
1

cos cos cos( ) cos( )
2

         

;
1 sin cos

dx

x x 


2
;

3 sin

dx

x


5
tg 2 ;x dx

3

4

sin
;

cos

x
dx

x


2

tg ; 2 ;
2

21 sin cos

1

x
t x arctgt

dx

x x
dx dt

t

 

 
 






2

2

2 2

2 / (1 )

2 1
1

1 1

dt t

t t

t t


 


 

 

 ln 1 ln 1 tg .
1 2

dt x
t C C

t
     




2
2

22

2 2 2

2

tg ; sin ;
/ (1 )1

3 sin 3 / (1 )
arctg ;

1

t
x t x

dx dt tt

dtx t t
x t dx

t

 


  
  

 


  2
3 4

dt

t





1 2 1 2
arctg arctg .

2 3 3 2 3 3

t tg x
C C   
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 c) 5 5

2 2

1 1 1 1
tg 2 tg 2 ; arctg ;

2 2 1 2 1

dt
xdx t x x t dx dt t

t t
     

 
 

 

3 4 2 2

2

1 1 1 1
ln(1 )

2 1 8 2 4

t
t t dt t t t C

t

 
         

 
  

 

 d) 
 

 

=  

e)  

 

. 

f)  

 

31 1 1
sin 4 sin 2 .

16 64 48
x x x C   

 

g)  

1 1 1 1
sin 2 sin 8 cos 2 cos 8

2 2 4 16
xdx xdx x x C      

.
 

 

13.3. Trigonometric substitutions 

 

Consider integrals of the following form: 

 2
;R x ax bx c dx  , 

where  2
;R x ax bx c   is some rational function. 

We will show that the specified integrals can be reduced to one of three 

integrals using substitution : 

4 2 21 1 1
tg 2 tg 2 ln (1 tg 2 ) .

8 4 4
x x x C    

3 2

4 4

cossin 1 cos
sin

sincos cos

x tx x
dx x dx

x dx dtx x


  

 
 

2

4

1
( )

t
d t

t


 

3

4 2 3

1 1 1 1 1 1 1
.

3 3 coscos
dt dt t C C

t xt t x


        

4 5 4 4
sin cos sin cos cosx xdx x x xdx     

4 2 2 4 2 2
sin

sin (1 sin ) cos (1 )
cos

x t
x x xdx t t dt

xdx dt


       


 

9
4 6 8 5 7 5 7 91 2 1 2 1

( 2 ) sin sin sin
5 7 9 5 7 9

t
t t t dt t t C x x x C          

2 4 2 21
sin cos (sin cos ) cos

2
x xdx x x xdx     

2

2 2sin 2 1 cos 2 1 1
sin 2 sin 2 cos 2

2 2 8 8

x x
dx xdx x xdx

 
      

 
  

21 1
(1 cos 4 ) sin 2 (sin 2 )

16 2 8
x dx x d x    


 

1
sin 5 cos 3 [sin(5 3) sin(5 3) ]

2
x xdx x x dx      

; ;
2 2

b b
x t x t dx dt

a a
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a)  2 2
;R t m t dt ;  b)  2 2

;R t t m dt ;  c)  2 2
;R t t m dt . 

Let’s isolate the complete square in the quadratic trinomial under the root 

 

. 

If 0a  , we have:    2 2 2
; ;R x ax bx c dx R t t m dt     . 

If 0a  , we get:    2 2 2

1
; ; ,R x ax bx c dx R t m t dt m R      . 

To find integrals of the form a), b), c) use trigonometric substitutions that 

reduce the given integrals to integrals of the form (sin , cos )R z z . 

For the integral  2 2
;R t m t dt  use the substitution sint m z , or 

cost m z . 

For the integral  2 2
;R t t m dt  use the substitution 

sin

m
t

z
 , or 

cos

m
t

z
 . 

For the integral  2 2
;R t t m dt  use the substitution tg ,t m z   or 

ctg .t m z   

Examples 13.4. Find the integrals: 

a) 
2 2

, 0I a x dx a   ; 

b) 
2 2

9

dx
I

x x




 ; 

c) 
2 3

( 9)

dx
I

x




 . 

The solution. 

a) 
2 2

, 0I a x dx a   . If you put , then 

 and . So, due to the new variable, the 

integral looks like this: 

. 

2 2
2 2 2

2 2
2

2 4 4

b b b b
ax bx c a x x c a x x c

a a a a

  
             

   

2 22
2

22 24

b c b b
a x a x m

a a aa

      
            

         

sinx a t

2 2 2
1 sin cosa x a t a t    cosdx a tdt

2 2 2 1 cos 2
cos cos cos

2

t
I a t a tdt a tdt a dt


      

2 2

sin 2
2 4

a t a
t C 
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Returning to the old variable using the formula arcsin
x

t
a

 , we obtain: 

22 2 2

2 2
arcsin 1 arcsin .

2 2 2 2

a x a x x a x x
I C a x C

a a a a

 
        

 
 

Therefore, the integral has the final form: 

2

2 2 2 2
arcsin

2 2

x a x
I a x dx a x C

a
      . 

b) 
2 2

9

dx
I

x x




 . Here we will apply the replacement: 

3

sin
x

t
 . So, as a 

result of this substitution, we get: 

2 2

2 2
2 2

2

3 3 cos 3 cos
; ;

sin sin sin

9 3 cos3 cos 19
9 ; cos 9

sin sinsin

dt t dt t
x dx

dx t t t
I

ttx x
x t x

t tt x

   

   

    

   

21 1 1
sin cos 9

9 9 9
tdt t C x C

x
       . 

c) 
2 3

( 9)

dx
I

x




 . Here we will apply the replacement: 3 tgx t . As a result 

of this substitution, we get: 

2 2

2 3
2 3

33

3 3
3 tg ;

1 1cos cos
cos sin

2727 9 9( 9)
( 9) .

coscos

dt dt
x t dx

dx t t
I tdt t C

x
x

tt

 

      


 

  

 

2

2 2

tg
sin ;

1 11 tg 3

9 9 ( 9)
tg 1

3 3

t
xt

xt
C C

xx x
t




    

 
   

 

.

 

 

13.4. Euler substitutions 

 

In some cases, it is more convenient to use Euler substitutions for integrals of 

the form  2
;R x ax bx c dx  . They also rationalize the integrand, but without 

using trigonometric functions. So, Euler substitutions have the following form: 

The first substitution: if 0a  , then 2
ax bx c a x t     . 
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The second substitution: if 0c  , then 2
ax bx c xt c    . 

The third substitution: if 
2

4 0b ac  , then 
2

( )ax bx c x k t    , where 

k   the root of the trinomial 2
ax bx c  . 

We will give three examples of the use of Euler substitutions. 

Example 13.5. The first substitution ( 1, 0a a  ). 

The solution. 

2

2

2

2

2 22

2

2

9
2 9 ; ;

2(1 ) 2 9

2 9 2( 1)
;

9 2 92( 1)2 9

2(1 ) 2( 1)2 9
2 9

2( 1)

t
t x x x x

t t t
dt

dx t t t
J dx dt

t t ttx x x

t tt t
x x t x

t


    

  

  
    

   


  
    



 

 
2

2 2

2 1 3 1 2 9 3
ln ln

9 3 3 3 2 9 3

dt t x x x
C C

t t x x x

    
    

     


. 

Example 13.6. The second substitution ( 1, 0c c  ). 

The solution. 

2

2 2 2

2

2

2 2 2

1 1;

1 2 1;

(1 ) 1
2 1 2(1 )

;
1 (1 )

x x xt

dx
J x x x t xt

x x x
t t t

x dx dt
t t

   

       

  
  

 
 

  

2

2 1 1 2
2 2 ln 1

2 2

dt
C C

t t t t t

 
           

  
 

2

2

1 1 2
2 ln 1

1 1

x x x
t C

x x x

  
     

  

. 

Example 13.7. The third substitution (
2

4 0b ac  ). 

The solution. 

2

2 2 2

2

2 2 22

2 2

2 2

5 4 ( 1) ; 6

4 4 ( 1)
; ;

1 1 4 4(1 ) 5 4
1 1

6 1 1
;

( 1)

x x x t tdt

dx x t t
J t x

x t t tx x x
t

tdt t t
dx

t
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2

1 2 5
ln

5 10 2 5

2

dt t
C

t
t


     

  
 

 

  

2( 4) 5( 1)4 1
ln

1 10 2( 4) 5( 1)

x xx
t C

x x x

  
    

   
. 

 

13.5. Integration of functions of the form ( )
x

R e  

 

Integration of functions of the form ( )
x

R e  are rationalized by the 

substitution 
x

t e . After replacing the variable, the process of integrating such 

functions is not difficult. Let’s show it. Since lnx t , then 
dt

dx
t

 . As a result of 

the substitution, we have: 

( ) ( )
x dt

R e dx R t
t

  . 

Examples 13.8. Find the integral: 
2

2

3 4 3

2 3

x x

x x

e e
J dx

e e

 


 
 . 

The solution. 

2 2

2

2

the m ethod of undeterm ined ; ln ;
3 4 3 3 4 3

coefficients gives the schedule:
2 3 ( 1)( 3);

3 4 3 1 1 1

( 1)( 3) 1 3

x

x x

x x

t e x t
e e t t

J dx dtdt
e e t t tdx

t tt

t t t t t t

 
   

    
   

 
  

   

   

1 1 1
ln ln 1 ln 3

1 3
dt t t t C

t t t

 
          

  
  

2
ln 1 ln 3 ln 2 3

x x x x
x e e C x e e C           . 

 

Tasks for classroom and independent work 

 

Find the given indefinite integrals: 

13.1. .              13.2. . 3
3

1 1

( 1) 1

x
dx

x x




 
 3

1 1

1 1

x dx

x
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13.3. .              13.4. . 

13.5. .              13.6. . 

13.7. .              13.8. . 

13.9. .      13.10. . 

13.11. .      13.12. . 

13.13.
 

.     13.14. . 

13.15. .     13.16. . 

13.17. .    13.18. . 

13.19. .    13.20. . 

13.21. .               13.22. . 

13.23. .      13.24. . 

13.25. .     13.26. . 

13.27. .     13.28. . 

13.29. 

6

2 ch

x
e dx

x
 .                                                  13.30. 

2

2

arctg( )
x

x

e dx

e
 . 

13.31. 
4 4

cos sin

dx

x x
 .                                     13.32. 

2

tg

1 tg tg

xdx

x x 
 . 

 

 

 

 

 

3 4
1 x

dx
x



 23
(1 )

x
dx

x


2

1

x
x dx

x



 2

1

1

x dx

x x







2
( 1) 1

xdx

x x x  
 2

( 1) 1

dx

x x x  


3
ctg xdx

6
sin xdx

4
cos

dx

x


4

3

cos

sin

x
dx

x


cos 5 cos 4x xdx sin 3 cos 5x xdx

2 4
sin cos

dx

x x


2

2

sin

1 sin

x
dx

x


8 4 sin 7 cos

dx

x x 


2 sin cos 5

dx

x x 


2 2
4 5 sin 3 cos

dx

x x 
 1

dx

tgx


2
1x dx

x





2

2
9

x dx

x 


2

2
4

x dx

x
 2

1 1 2

dx

x x  


2
1

dx

x x x  
 2

2

dx

x x x 


2
2

x x

dx

e e 


 

2

2
4

1

1

x

x

e
dx

e
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Answers and instructions 

 

13.1. .   

13.2. 2 3 4 5 7 2 63 6 6
6 3 2 3 ln(1 ) 6 , 1.

2 5 7
t t t t t t t arctgt C t x             

13.3. .  

13.4. . 

13.5.  . 

13.6. .   

13.7. 
2

3 2 1 1 2
ln arcsin .

1 5

x x x x
C

x

    
 


 

 

13.8. .   

13.9. .   

13.10. .   

13.11. . 

13.12. .   

13.13. .   

13.14. .   

13.15. . 

4 7

3 3
3 1 3 1

16 1 28 1

x x
С

x x

    
    

    

34 4 4
12

(1 ) 1 (1 ) 3
7

x x x C
 

     
 

1 6

5 6 1 6 1 6

3

6 3
4 18 21

5 1

x
x x x arctgx C

x
    



21
(15 10 8 ) (1 )

24
x x x x    

5
arcsin

8
x C 

2
1 1 1

ln
1 1

x x x
C

xx x

   
 

  

2
2 2 1

ln
1

x x x
C

x

   
 



21
ln sin

2
ctg x x C  

35 1 3 1
sin 2 sin 4 sin 2

16 4 64 48
x x x x C   

31

3
tg x tgx C 

3

2

3 cos 3
cos ln

2 2 sin 2 2

x x
x tg C

x
   

1 1
sin 9 sin

18 2
x x C 

1 1
8 cos 2

16 4
cos x x C  

31
2

3
tgx tg x ctgx x C   
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13.16. .  13.17. .   

13.18. .   

13.19. .  13.20. . 

13.21. .   

13.22. .  13.23. . 

13.24. . 

13.25.   . 

13.26. .   

13.27. . 

13.28. .  13.29. 

5 3

arctg( )
5 3

x x

x xe e
e e C    . 

13.30. 

4

2ln( 1)
arctg( )

4

x

xe
x e C


   . 13.31.  

1 tg(2 )
arctg

2 2

x
C

 
 

 
.  

13.32.  
2 1 2 tg

arctg
3 3

x
x C

 
  

 
. 

 

1
( 2 )

2
x arctg tgx C 

5
2

ln

3
2

x
tg

C
x

tg







3 1
1 2

5 5

x
tg

arctg C

 


 
 

 
 

 
1

3
3

arctg tgx C
1

( ln sin cos )
2

x x x C  

2 1
1 arccosx C

x
  

2 29
9 ln( 9 )

2 2

x
x x x C    

2
2 arcsin 4

2 2

x x
x C  

2
1 1 1 2

ln 2 ,  
z x x

arctgz C z
z x

   
  

4

3

3 1
ln ,

2(2 1) 2 2 1

z
C

z z
 

 

2
1z x x x   

2
1 2 2 2

ln
42

x x
C

x

  
  

1 1
ln 1 ln( 2)

2 3 6

x xx
e e C     

4

8

1
x

x C
e
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Topic II. The definite integral and its practical application 

 

PRACTICAL LESSON  14 

The Newton-Leibniz formula and other methods of integrating the 

definite integral. The definite integral as a function of the variable 

upper bound 

 

14.1. The technique of constructing the Riemann integral. 

Application of the Newton‒Leibniz formula 
 

To understand the technique of constructing the Riemann integral, 

consider the concept of the limit of integral sums using the following example. 

Example. Calculate the integral 
1

2

0

x dx  as a limit of integral sums. 

The solution. We have 2
( )f x x , 0a  , 1b  . Let’s divide the segment 

[0,1]  of integration into n  equal parts, then 
1

k

b a
x

n n


   , and choose the 

partition points as follows: 
k k

x  . We have: 

0 1 2 1

1 2 1
0, , , , , 1

n n

n
x x x x x

n n n



     ; 

2 2 2

0 1 2 1

1 2 1
( ) 0, ( ) , ( ) , , ( ) , ( ) 1

n n

n
f f f f f

n n n
    



     
         

     
; 

2

1
( )

k k

k
f x

n n


 
   

 
. 

Thus, by the definition of the definite integral in the Riemann sense, we 

have: 

2 2 2 2 21
2

3 3
10

1 1 2 3 ( 1)(2 1) 1
lim lim lim

6 3

n

n n n
k

k n n n n
x dx

n n n n  


      
     

 
 . 

In the last transformations, the formula of the sum of squares of natural 

numbers was used. 

Next, we present the key Newton–Leibniz formula in integral calculus. 

Theorem 14.1 (Newton–Leibniz formula). If  any original function 

from a continuous function , then the formula is valid: 

.                                  (14.1) 

( )F x 

( )f x

( ) ( ) ( )

b

a

f x dx F b F a 



182 
 

Let’s give a few examples using the Newton–Leibniz formula. 

Example 14.1. Calculate definite integrals: 

a) 
1

2
0

arctg

1

x x
dx

x




 ; 

b) 
6

2
0

cos

4 sin 1

x
dx

x




 ; 

c) 
2

4
sin

0

sin 2
x

x e dx



 ; 

d) 

1

2

2
1

xe
dx

x
 . 

The solution. 

a)  

 

b) 
6 6

6

2 2 2 0
0 0

cos 1 (sin ) 1
arctg (2 sin )

4 sin 1 4 sin (0, 5) 2 8

x d x
dx x

x x

 
 

  
 

  . 

c) 
2 2 2

4 4
4sin sin 2 sin

0
0 0

sin 2 (sin ) 1
x x x

x e dx e d x e e

 


      . 

d) 

1
2

1 12 2

2
1 1

1

1x

x x
e

dx e d e e e
x x

 
      

 
  . 

 

14.2. Replacement of a variable  

in the definite integral 
 

When calculating definite integrals, the variable replacement (substitution) 

method is very often used. 

Theorem 14.2 (On the replacement of a variable in a definite integral 

). 

Let the following conditions be fulfilled: 

1) the function  is continuous on the segment ; 

2) the function  and its derivative  are continuous on the 

segment ; 

3) ;  and : . Then the following 

 

1 1 1 1 12

2 2 2 2

0 0 0 0 0

1 ( 1)

21 1 1 1

x arctgx x arctgx d x
dx dx dx arctgxd arctgx

x x x x

 
    

   
    

 
1

2 21
2

0
0

1 1
ln 1 ln 2 .

2 2 2 32

arctg x
x


    

( )x t

( )f x [ ]a,b

( )x t ( )x t 

[ , ] 

( ) a   ( ) b   ( , )t    ( )a t b 



183 
 

relation holds: 

.                                (14.2) 

Remark 14.1. If, when finding the indefinite integral using variable 

substitution  in the original function, it was necessary to return from the 

new variable  to the old variable , then when calculating the definite integral, 

it is necessary to change the limits of integration instead, and the obtained result 

of integration is final. 

Remark 14.2. New limits of integration (lower and upper) are found from 

the following equations:  and . Hence we have:  and 

. 

Remark 14.3. If the replacement of the variable in the definite integral is 

performed by the formula , then the new limits  and  can be 

determined directly by the following formulas: , . 

However, it should be borne in mind here that the function , which 

is the inverse of , must satisfy all the conditions of Theorem 14.2. In 

particular, the function  within the limits of integration  must be a 

continuously differentiable function of the argument , and when it changes 

from  to , the function  must change from  to . 

It is most convenient to replace the variable with functions that are 

monotonically differentiable on the integration interval. This property guarantees 

the uniqueness of both direct and inverse functions. 

Example 14.2. Calculate definite integral: . 

The solution. Let’s replace the variable: . The new limits of 

integration can be found from the equations  and . We have 

. When  changing from  to , the variable  will pass the 

entire integration interval . As a result, we get: 

 

 

( ) [ ( )] ( )

b

a

f x dx f t t dt





   

( )x t

t x

( )a   ( )b  
1
( )а 




1
( )b 




( )t x  

( )a  ( )b 

( )x t

( )t x

( )x t [ , ] 

t

  ( )x t a b

0 ,5

2 2

0

1x x dx

sinx t

sin 0 
1

sin
2

 

0,
6


   t 0

6


sinx t

 0,1 2

60,5 / 6

2 2 2 2 2

0 0 0

1
1 sin cos sin 2

4
x x dx t tdt tdt

 

     

 

/ 6

0

1 sin 4 3
61 cos 4 .

8 8 32 48 640

t t
t dt
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Example 14.3. Calculate definite integral: . 

The solution. Let’s replace the variable: ,  and . 

From the formula , we find new limits of integration:  and 

. After integration, we get: 

 

Example 14.4. Calculate definite integral: 

3

4 2

1 4

dx

x x 
 . 

The solution. Let’s make a variable substitution: 2 cosx t ;  2 sindx tdt  ;  

arccos
2

x
t

 
  

 
;  

1 2
;

3 6
t t

 
  : 

3 6 3

4 4 44 2

1

3 6

2 sin 1

2 cos 2 sin 16 cos4

dx tdt dt

t t tx x

 

 

    
  

    

 
3 3

2 3

2

6
6

1 1 1 11 3
1 tg tg tg

16 cos 16 3 108

dt
t t t

t

 




 
      

 
 . 

Example 14.5. Calculate definite integral: 
3

3

4

sin cos

dx

x x





 . 

The solution. Let’s make a variable substitution: tgt x ;
2

cos

dt
dx

t
 ; 

1 2
1; 3t t  . 

3
3 2 23

3

1 1

4

1 3 1 1
ln ln 3 ln 3 1

sin cos 2 2 2 2

dx t t
dt t

x x t





 
        

 
  . 

Example 14.6. Prove that the given integral can be found using the 

formulas (integral with symmetric limits of integration): 

0

2 ( ) , ( ) odd function;
( )

0, ( ) even function.

a

a

a

f x dx if f x
f x dx

if f x





 





  

3

0

1x xdx

1t x 
2

1x t  2dx tdt

1t x  0 1x t  

3 2x t  

   
3 2 2 5 3

2 4 2

0 1 1

2 11
1 1 2 2 2 7 .

15 3 15

t t
x x dx t t t dt t t dt
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Proof. Let us present the required integral ( )

a

a

f x dx



  in the form: 

0

0

( ) ( ) ( )
a a

a a

f x dx f x dx f x dx
 

    . 

Next, in the first integral of the right-hand side of this relation, we will 

replace the variable  ( ). As a result, we get: 

 

0 0

( ) ( ) ( )
a a a

a

f x dx f t dt f x dx


     . 

In the first integral on the right, we denote the variable of integration again 

by , then 

. 

It is obvious that the integrand function in the right part is equal to zero if 

the function  is odd and equal to  when the function  is even. 

Found formulas are very useful. For example, without calculations of the 

corresponding definite integrals, it is immediately possible to establish that 

;  . 

 

14.3. Integration by parts in a definite integral 

 

Let’s write down the formula for integration by parts in the definite integral: 

,                 (14.3) 

where . 

Example 14.7. Calculate definite integral: . 

The solution. Let’s put:  , ,  

 

x t  dx dt 

0

0

( ) ( ) ( )

a a

a a

f x dx f t dt f x dx



      
0 0

( ) ( ) ( ) ,

a a a

a

f x dx f t dt f x dx



    

x

0

( ) [ ( ) ( )]

a a

a

f x dx f x f x dx



   

( )f x 2 ( )f x ( )f x

2
5

0

a

x

a

x e dx



  
3 2

sin cos 0x x dx





  

( ) ( ) ( ) ( ) ( ) ( )

b b
b

a

a a

u x v x dx u x v x v x u x dx      

( ) ( ) ( ) ( ) ( ) ( )
b

a
u x v x u b v b u a v a 

3

2

1

ln

e

x xdx

lnu x
dx

du
x



3 3 5

2 2 2
2

.
5

dv x dx v x dx x   
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After substitution, we will have: 

. 

Example 14.8. Calculate definite integral: 

3

2

3

sin

cos

x x
J dx

x





  . 

The solution. The integrand function is even, therefore 

3 3

2 2

3 0

sin sin
2

cos cos

x x x x
J dx dx

x x

 



   . 

Let’s make a variable substitution: 

u x ,  
2

sin

cos

x
dv dx

x
 ,  du dx ,  

1

cos
v

x
 . 

Integrating by parts, we get: 

333 3

2

00 0 0

sin 2 2 5
ln tg ln tg

2 cos cos cos 3 4 2 3 12

J x x x dx x
dx

x x x

 
      

          
   

  . 

Therefore, the required integral is equal to: 

4 5
2 ln tg

3 12
J

  
   

 
. 

Example 14.9. Calculate definite integral: 

1

5

1

arctgJ x xdx



  . 

The solution. The integrand function is even, therefore 

1 1

5 5

1 0

arctg 2 arctgJ x xdx x xdx



   . 

Let’s make a variable substitution: 

arctgu x ,  
5

dv x dx ,  
2

1

dx
du

x



,  

6

6

x
v  . 

Integrating by parts, we get: 

11 1 16 6

5 4 2

2 2

0 0 00

arctg 1 1 1
arctg 1

2 6 6 1 24 6 1

J x x x dx
x xdx x x dx

x x

  
         

  
    

1
5 3

0

1 13 13
arctg

24 6 5 3 24 90 24 12 90

x x
x x

    
          

 

. 

3 5 3 5 5 5

2 2 2 2 2 2

1 11

2 2 2 4 2
ln ln 1 3 2

5 5 5 25 25

e
e e

x xdx x x x dx e e e
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Therefore, the required integral is equal to: 

13 13
2

12 90 6 45
J

  
    

 
. 

Example 14.10. Calculate definite integral: 
1

0

ln(2 )x x dx . 

The solution. Let’s calculate the given integral by parts: 

1 12 2
1

2 0

0 0

ln(2 ); ;
12

ln(2 ) ln(2 )
2 2 2

;
2

dx
u x du

x xx
x x dx x dx

xx
dv xdx v

  


      


 

   

1 1 1 1 12 2

0 0 0 0 0

1 1 ( 4 4) (4 8) 4 1
( 2) 2 2

2 2 2 2 2 ( 2)

x x x x dx
dx dx x dx dx

x x x

    
         

  
      

1

2

0

1 5
2 2 ln 2 ( 2) ln 4

4 4
x x x

 
        
 

. 

Example 14.11. Calculate the limit: 

2

sin 2

2

sin
0

2

( 1)

lim

ln(1 )

x

t

x

x
x

x

e dt

t dt










. 

The solution. Since we have classical uncertainty (0/0), we will use 

Lhospital’s rule 

22

sin 2sin 2

22

sin
0 0

sin2
2

( 1)( 1)
0

lim lim
0

ln(1 )
ln(1 )

xx

tt

xx

x
x x

x

x
x

e dte dt

t dt
t dt

 


 

  
   

   
   

 
 



 

 

2 2

4

4
sin 2 4

42 2
0 0

4

80
( )

( 1) 2 cos 2 ( 1) 2 3lim lim 32
5ln(1 sin ) cos ln(1

'
) 1

( )
6

 

x x

x x

x
o x

e
Taylor s formula

x e
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Tasks for classroom and independent work 

 

I. Calculate the given definite integrals: 

 

14.1. .     14.2. . 

14.3. .     14.4. . 

14.5. .   14.6. . 

14.7. .                14.8. . 

14.9. .                14.10. . 

14.11. .      14.12. . 

14.13. .     14.14. . 

14.15. .       14.16. 

1

7

0

arctgx xdx . 

14.17. 

1

2

0

arcsinx xdx .      14.18. . 

14.19. .                                14.20. . 

14.21. 
1 3 6

3 2

0 ( 1)

x x
dx

x x




 .                       14.22. 

2

1

ln sin(ln )
e

x x
dx

x





 . 

14.23. 

1
2 arctg

2

0

sin cos 1

(3 5 cos ) cos

x x
dx

x x

 


 .           14.24. 

1

2 2

1
(1 )

dx

x



 . 

 

 

 

22 1

3

1

x
e dx

x
 2

1
(1 ln )

e
dx

x x


1

1
5 4

xdx

x





9

3

1

1x xdx

4 3 2

2

4x
dx

x




3 2

2

1

1 x
dx

x





1 2

2

2

2

1 x
dx

x





ln 5

0

1

3

x x

x

e e
dx

e






2

0
3 2 cos

dx

x






2

0
5 3 cos

dx

x






3 4

2

0 ( 1) 1

dx

x x 


1 2

4

1

1

1

x
dx

x







2 1

0 ,5

1
1

x
xx e dx

x

 
  

 


2 2

0

1

1

x
dx

x






1

2 3

0

x
x e dx

1

2

0

cosx xdx

2

1

( ln )

e

x x dx

4

3

0

sin 4
x

e xdx
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II. Calculate the limits:

14.25. 
2

arctg 3

2

tg 2
0

ln(1 )

lim

( 1)

x

x

x
x

t

x

t dt

e dt










.          14.26. 

arctg( 3 )

2

arcsin( 2 )

tg( 2 )
0

2

sin

sin( )

lim

tg( )

x

x

x
x

x

t dt

t dt






. 

III. Find definite integrals in symmetric limits:

14.27. 

1

cos

1

x
xe dx



 .  14.28.

4

10 9

4

sinx xdx





 .  14.29.
3 2 cos

xdx

x






 .  

14.30. 

1

6

1

1x x dx



 . 

IV. Using definite integrals, find the limits of such sums:

14.31. 
1 2 3 ( 1)

lim sin sin sin sin
n

n

n n n n n

   



   
     

  

. 

14.32. 
1

1 2 3
lim , ( 0)

p p p p

p
n

n
p

n




    
 

 

. 

14.33. 
1 1 2 3

lim 1 1 1 1
n

n

n n n n n

  
         

 
  

. 

14.34. 1

2

( )( 1)

lim , ( 0)

n

k

n

nx k nx k

x
n





 
   

  
 
 
 


. 

14.35. 

1 2 3

2 2 2 2
lim

1 1 11

2 3

n

n n n n

n n
n n n

n



 
 

    


   
 

Answers and instructions 

14.1. .  14.2. .  14.3. .  14.4. .  14.5. .  

14.6. .  14.7. .  14.8. .  14.9. .  

14.10.  14.11. .     14.12. .  

4

2

e e

4

 1

6

6
66

7


1
(2 3 )

3


2 2 3
2 ln

3 1 2


 


1

4


 4 

2 1

5 5
arctg

.
2

 1 9 4 2
ln

72



2
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14.13. .           14.14. .           14.15. .   

4.16. 
19

210
.              14.17. 

2

6 9


 .                    14.18. .   

14.19. .        14.20. .         14.21. 
2

6
3


 .   

14.22. 1 .                  14.23. 
1 135

ln
6 16

 
 
 

.            14.24. 
1

4 2


 .   

14.25. 
26

7
.               14.26. 

19

7
.                        14.27. 0.  

14.28. 0.                   14.29. 0.                           14.30. 0.  

14.31. 
2


.                 14.32. 

1

1p 
.                    14.33. 

2
(2 2 1)

3
 .  

14.34. 
1

2
x  .            14.35. 

1

ln 2
. 

5 23

2
e

2
1

4 2


 

3
5 2

27

e 

4

3
5 2

27

e  3 44
( 1)

25
e
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PRACTICAL LESSON  15 

Application of the definite integral in geometric and physical problems 

(beginning) 

15.1. Calculation of areas of flat figures 

15.1.1. Calculation of the areas of flat figures 

in rectangular ones Cartesian coordinates 

We will briefly state the relevant theoretical provisions regarding the 

educational material of this practical session. 

А. Let the function ( ) 0f x   be given in Cartesian coordinates OXY  on the 

segment . Then the area of the curvilinear trapezoid, which is bounded by 

the curve , the axis  and the straight lines , , is equal to 

.        (15.1) 

If the function is defined on , then the definite integral is 

negative: . But in absolute terms, it is equal to the area of the 

corresponding curvilinear trapezoid : 

.    (15.2) 

Example 15.1. Calculate the area of the figure bounded by the curves 
3

( ) siny x x  and 0y   on a segment [0, ]x  . 

The solution. Draw the figure yourself. We calculate the area using formula 

(15.1): 

3 2 2 3

00 0 0

1 4
sin sin cos (1 cos ) cos cos cos

3 3
S xdx xd x x d x x x

  

 
          

 
   . 

В. If it is necessary to calculate the area of the region  (Fig. 15.1), 

which is limited by curves , , and straight lines , , 

then under the condition that , the area is calculated according to the 

following formula: 

[ ; ]a b

( )y f x OX x a x b

( )

b

a

S f x dx 

( ) 0f x  [ ; ]a b

( ) 0

b

a

f x dx  S

2 2
aA B b

( )

b

a

S f x dx  

1 2 2 1
A A B B

1
( )y f x

2
( )y f x x a x b

2 1
( ) ( )f x f x
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Fig. 15.1 

.      (15.3) 

If the flat figure has a more complex shape (Fig. 15.2), then it must be 

divided into a finite sum (difference) of curvilinear trapezoids by straight lines, 

, , , , which are parallel to the axis . Then the area of 

the figure will be equal to the algebraic sum of the areas of the formed regions 

, i.e. the area  of the complex figure will be calculated by the 

formula 

. 

Fig. 15.2 

 2 1 2 1
( ) ( ) ( ) ( )

b b b

a a a

S f x dx f x dx f x f x dx     

x a x b x c x d O Y

1 2 3
( ), ( ), ( )S S S S

1 2 3
S S S S  

b da c

2
S

Fig. 15.2 

O
X

Y

1
s

3
S

1
A

2
A

2
B

1
B

1
( )y f x

2
( )y f x

O

X

Y

a b
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Example 15.2. Calculate the area of the figure bounded by the curves 

 and . 

The solution. Let’s draw a figure, the area of which must be found (Fig. 

15.3). We find the points of intersection of the curves: 

. Then we calculate the area using formula (15.3): 

 
1

1 1 1 3
1

2 2 32

0

0 0 0 0

2 1 2 1 1

3 3 3 3 3
S xdx x dx x x dx x x           . 

Fig. 15.3 

Example 15.3. Find the area of the figure bounded by a straight line 

and a parabola  (Fig. 15.4). 

Fig. 15.4 

The solution. Let’s find the abscissas of the points and the 

intersection of these lines. They will be the limits of integration: 

Using formula (15.3), we find the area of the given figure: 

.

y x
2

y x

2 4

1 2
0; 1x x x x x x     

y x

2
2y x 

A B

1;2
2

21

2












xx

xy

xy

  



















1

2

23
2

2

9

2

1

23
22

xx
xdxxxS

Y

X
O 1

1

xy 

2
2 xy 

B

2

2

2

A

0 1 

1 

Y 

X 

у=х 2

у= x 
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15.1.2. Calculation of areas of flat figures bounded 

by curves, which are given parametrically 

Let’s calculate the area of the curved trapezoid (Fig. 15.5) if the curve 

 is given by parametric equations (15.4), where the parameter t  changes 

on the segment: , 

( ) ( )

( ) ( )

x t t

y t t










 ,   (15.4) 

Fig. 15.5 

After replacing the variable in integral (15.1) ( , ) based 

on equation (15.4), we get: . Then the integral (15.1) 

takes the following form: 

.       (15.5) 

Let’s consider two examples. 

Example 15.4. Calculate the area of the figure bounded by the ellipse 

. 

The solution. Let’s calculate the area of the upper half of the ellipse, and 

then double the result. The parametric equation of the ellipse has the form 

,  . For the upper half of the ellipse, the 

parameter  varies from  to 0 and . Importantly! To get the 

correct result, it is necessary that the variable x increases. That’s why the limits 

for t  are chosen exactly like this. Using formula (15.5), we obtain: 

. 

( )y f x

t  

( )x t ( )dx t dt 

( ) [ ( )] ( )y f x f t t   

( ) ( ( )) ( ) ( ) ( )

b

a

S f x dx f t t dt t t dt

 

 

        

2 2

2 2
1

x y

a b
 

cosx a t siny b t (0 2 )t  

t  sindx a tdt 

00 0 0

2 1 cos 2 sin 2
2 sin ( sin ) 2 sin 2

2 2

t t
S b t a t dt ab tdt ab dt ab t ab

   


  

         
 
 

  

Fig. 15.5 
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This problem can be solved without going to the parametric form of the 

ellipse equation. Let’s show it. We express  through  for the part of the ellipse 

located in the first quarter of the coordinate plane: , . 

Let’s find the fourth part of the area of the ellipse and then multiply it by four 

times to calculate the total area of the ellipse: 

2
1

2 2 2 2

1 2 2
4

20 0

sin ; cos ; 0;

cos
cos ;

2

a x a t dx a tdt t
b b

S a x dx a tdt
a aa x a t t





  

    
  

 

2

0

(1 cos 2 )
2 4

ab ab
t dt




   . 

Therefore, the total area of the ellipse is equal to . This formula is 

very useful further on. 

Example 15.5. Calculate the area of the loops of the curve given by the 

equation: 3
( )x y xy  . 

The solution. Draw the figure yourself. Let’s convert the given equation to 

the parametric form using substitution: y xt . Then the equation of the curve will 

take the following form: 

2

3

3

;
(1 )

.
(1 )

t
y

t

t
x

t







 
 

Let’s set the limits of integration. The curve forms a loop when the 

parameter runs through the values in the interval [0, )t   . However, it should be 

noted here that before calculating the corresponding integral, it is necessary to set 

the value of the parameter t , at which the variable x  acquires the largest value. 

This value is equal to 
1

2
t  . The resulting integral is called an improper integral 

of the first kind. We will get acquainted with such integrals in Practical Lesson 

No 17. Therefore, it is necessary to calculate the following integral: 

1 1 1

2 2 2

10 0

2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )S y t dx t y t dx t y t dx t y t dx t





        

2 2

3 3 7

0 0

(1 2 ) 1

(1 ) (1 ) (1 ) 60

t t t t
d dt

t t t

 
  

     
   

  . 

y x

2 2b
y a x

a
  0 x a 

S ab
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Intermediate calculations in the integration process are omitted here. 

Importantly! We draw your attention to the limits of the corresponding 

integrals, the content of which can be understood if the loop diagram is 

constructed and analyzed in detail. 

15.1.3. Calculation of areas of flat figures bounded 

by curves,which are specified in the polar 

coordinate system 

Before studying this educational material, you need to repeat the 

educational material about the polar coordinate system. 

Definition. The figure , which is bounded by a curve given by a 

continuous function  and rays with polar angles  and , is 

called a curvilinear sector (Fig. 15.6). 

Fig. 15.6 

The area of the curved sector is calculated by the formula 

.          (15.6) 

Example 15.6. Calculate the area bounded by the “three-petal rose”

 (Fig. 15.7). 

Fig. 15.7 

OAB

( )      

21
( )

2
S d





   

( ) cos 3a   

Fig. 15.7 

3

2
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 2 

6


 

2


 

5

6


 

  

7

6


 

a

11

6


 

O

 

   





   
O

A

   

 B
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The solution. Let’s use the symmetry of this figure. Let’s find the area of half 

of the first petal of the “rose”, which corresponds to the angles from the line segment 

, and multiply it by six. Therefore, according to formula (15.6), we have: 

. 

Example 15.7. Calculate the area of the figure bounded by Bernoulli’s 

lemniscate (Fig. 15.8): ;  ;  . 

The solution. Let’s plot this curve and use the symmetry of this figure. 

Let’s find the area of the fourth part of the required area using formula (15.6). 

. 

Fig. 15.8 

Example 15.8. Find the area of one loop of a figure bounded by a curve: 
2 2 2 2

( ) 4x y x y  . Let’s draw of the specified curve (Fig. 15.9) in the polar coordinate 

system. The equation of the curve in the polar coordinate system is given below. 

0
6


 

26
6 6

2 2 2

0 0
0

1 1 cos 6 3 sin 6
6 ( cos 3 ) 3

2 2 2 6 4

a
S a d a d a


 

  
   

  
      

 
 

( ) cos 2a    0
4


 

3 5

4 4

 
 

2 244 4
2 2 2

0 0
0

1 1 1 sin 2
( ) cos 2

4 2 2 2 2 4

a a
S d a d S a

 


          

3
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Fig. 15.9 

The solution. Before solving this problem, you need to build the specified 

curve yourself. Let’s move to the polar coordinate system, then the equation of 

the given curve takes the form: 2
4 sin cos    . To obtain the area of a figure 

bounded by one curve loop (Fig. 15.9), formula (15.6) should be used and 

integrated within [0; 2]  : 

 
2 2 22

2 2 4 2

0 0 0

1
4 sin cos 8 sin cos sin 2 (1 cos 2 )

2
S d d d

  

              

22 2 2
2 2 3

0 0 0

0 0

1 1
sin 2 sin 2 cos 2 (1 cos 2 ) sin 2

2 3 4
d d d

  


       



        . 

15.2. Calculation of the length of the arc of the curve 

15.2.1. Calculation of the arc length of a plane curve given 

by the equation in parametric form 

Definition 15.1. Let the functions  and  be given and continuous 

on the set . Let’s say that two equations 

, ,   ,       (15.7) 

set a simple flat curve  if different points of the curve  correspond to different 

values of the parameter  from the segment . 

( )t ( )t

{ }t

( )x t ( )y t [ , ]t  

L L

t [ , ] 
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From this definition it follows that a simple plane curve has no self-

intersection points. 

Definition 15.2. A curve  described by equations (15.7) is called a 

parametrically defined curve if there exists such a system of segments 

that divide the set  so that for values  from each given elementary segment of 

this system, equations (15.7) define a simple curve. 

Now let’s introduce the concept of the arc length of a parametric curve. 

Let the curve be given by the parametric equation (15.7), where the 

parameter  changes over the segment . Let  be an arbitrary division of 

the segment  by points 

. 

Next, we will call it  the division of the segment . Let us denote by 

letters  the points of the curve  corresponding to this division. 

Definition 15.3. We will call the broken line  that was 

formed in this case the broken line inscribed in the curve  and corresponding 

to the given – division of the segment . 

Since the length of the elementary link of this broken one is 

equal to 

, 

then the length  of this broken line will be equal to: 

. (15.8) 

Definition 15.4. If the set  of lengths of broken lines inscribed in the 

curve , which correspond to arbitrary -partitions of the segment , is 

bounded, then the curve  is said to straighten, and the exact upper edge of the 

set is called the length of the arc of the curve. 

Remarks 15.1. From the definition of a parametrically given curve  and 

the definition of the length  of an arc of such a curve, it follows that the length 

is always positive, . 

Remark 15.2. There are non-straightening curves. Examples of such 

curves can be found in [1, 2]. We will consider only those curves that straighten. 

Let us formulate sufficient conditions for the curve to be such that it 

straightens. Let’s write down the formula for calculating the arc length of a 

parametrically specified curve . 

Theorem (on sufficient conditions for straightening a curve). If the 

functions  and  on the segment  have continuous derivatives, then 

L

L

1
{[ , ]}

i i
t t


{ }t t

L

t [ , ]  T 

[ , ] 

0 1 1n n
t t t t 


     

T  [ , ] 

0 1 2
, , , ,

n
M M M M L

0 1 2 n
M M M M

L

T [ , ] 

i
l

1i i
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2 2

1 1
[ ( ) ( )] [ ( ) ( )]
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l t t t t   
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i

l t
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1 1

1 1 1
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n n n
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i

l t
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L

L
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L

( )t ( )t [ , ] 



200 

the curve defined by the parametric equations (15.7) is the one that 

straightens, and the length  of its arc is calculated by the formula: 

.         (15.9) 

Remarks 15.3. Formulas (15.8) and (15.9) resemble the well-known 

Pythagorean Theorem for finite segments. They represent a certain generalization 

of it for the case of infinitesimally small increments  and  functions 

(15.7), if the parameter  is given an increment . However, this is possible 

only under the condition that the curve  defined by parametric equations (15.7) 

is the one that straightens. 

Remark 15.4. Formula (15.9) remains true for such curves that are 

intersected by vertical straight lines at more than one point, if only both 

derivatives were continuous at all points of the curve:  and . Such a 

curve under the condition that ( ) 0t   , ( ) 0t   , [ ; ]t    , is called smooth. 

Now let the spatial curve be given in parametric form: 

, ,  , . 

If the functions , , are continuous and have 

continuous derivatives on the segment , then the length of the curve is 

calculated by the formula: 

(15.10) 

Example 15.9 (Flat curve). Calculate the arc length of the asteroid 

,  (Fig. 15.10). 

The solution. Since the curve is symmetrical with respect to both 

coordinate axes, we will first calculate the length of  the part contained in the 

first quarter. Let’s find the corresponding derivatives: 

; ,  . 

L

l

2 2
[ ( )] [ ( )]l t t dt





   

( )t ( )t

t t

L

( )t  ( )t 

( )x t ( )y t ( )z t ( )t  

( )x t ( )y t ( )z t

[ , ] 

     
2 2 2

.l t t t dt





                

3
cosx a t

3
siny a t

1
4

2
3 cos sin

dx
a t t

dt
 

2
3 sin cos

dy
a t t

dt
 0

2
t
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Fig. 15.10 

Then by formula (15.10) we get: 

Example 15.10 (spatial curve). Calculate the length of the arc of the spiral 

line , , , when  changing from 0 to . 

The solution. From the given equations we find: , 

; . Substitute into formula (15.10): 

15.2.2. Calculation of the arc length of a plane curve 

given in a rectangular Cartesian coordinate system 

Let a differentiable function  on a segment  be given, the graph of 

which is a certain curve  on the plane . In addition, we consider that the given 

curve is one that straightens. Therefore, this curve can be specified in the parametric 

form (15.7), and besides  and . Let’s find the length  of the arc 

 of this curve , which is contained between the vertical lines , . 

From formula (15.9), we write the differential for the elementary arc of the 

curve  as follows 

. 

2 2

2 4 2 2 4 2 2 2

0 0

4 9 cos sin 9 sin cos 12 cos sinL a t t a t t dt a t t dt

 

    

2
22

0 0

sin
12 cos sin 12 6 .

2

t
a t tdt a a




  

cosx a t siny a t z amt t 2

sindx a tdt 

cosdy a tdt dz amdt

2 2

2 2 2 2 2 2 2 2

0 0

sin cos 1 2 1 .L a t a t a m dt a m dt a m

 

       

( )y f x [ ]a,b

L XOY

( )a   ( )b   l

AB L x a x b

L

2 2 2 2 2 2
[ ( )] [ ( )] [ ( ) ] [ ( ) ] ( ) ( )dl t t dt t dt t dt dx dy           

а 
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The last formula can be transformed as follows: 

. 

Let’s integrate the left and right sides of the last equality in the range from 

to and get the formula for calculating the length of the arc using the 

definite integral: 

.         (15.11) 

Example 15.11. Find the length of the chain line , . 

The solution. Because,  then by formula (15.11) we 

obtain:  

. 

Example 15.12. Find the length of the arc of the curve  on 

the interval . 

The solution. Let’s find the derivative of the given function: . 

Substitute the found derivative into formula (15.11): 
4

2 2

2

3 3
3

3 ln 3
1 ctg ln tg 0 ln ( )

sin 2 2
 

3

dx x
l linear u txdx

x
ni s


 

 


 
       

 
 

15.2.3. Calculation of the arc length of a plane curve, 

which is specified in polar coordinates 

Let the equation of the curve be given in polar coordinates 

,         (15.12) 

where  is the polar radius;  the polar angle; . 

Let’s write down the formula for calculating the arc length of a plane curve, 

which is given in polar coordinates: 

  (15.13) 

2

2 2 2
( ) ( ) 1 1 [ ( )]

dy
dl dx dy dx f x dx

dx
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Example 15.13. Find the length of the cardioid . 

The solution. If the polar angle  varies within , then when 

integrating within these limits, we get half of the required length (Fig. 15.11, 2а  ). 

Let’s find the derivative : . Now we use the formula (15.13):
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Fig. 15.11 

Tasks for classroom and independent work 

І. Find the areas of figures bounded by given lines: 

15.1. . 15.2. , , . 

15.3. , .  15.4. ; . 

15.5. .   15.6. . 

15.7. .  15.8.  
4 4

: cos , sin , 0, 0D x a t y b t x y    . 

15.9. Find the area of the figure bounded by the line . 

15.10. Find the area of the figure bounded by the lines  and 

. 

   1 cosa   

 0   

  sina   

 
22 2 2

0 0

2 1 cos sin 2 2 2 cosL a a d a d

 

          

00

4 cos 8 sin 8 .
2 2

a d a a


 

  

2
2 ,  0y x x x y   

2 2
41x y  20xy  0, 0x y 

2
( 3)y x 

3
9y x  2x y 2x y 

2(1 cos )   sin 3a 

2 2 3
2 , 2x t t y t t   

4 4 2 2
x y x y  

2 2
2x y ax 

2 2
2x y ay 
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15.11. In what ratio does the parabola  divide the area of the circle 

? 

II. Find the lengths of the arcs of the curves.

15.12. .      15.13. . 

15.14. .    15.15. . 

15.16. . 

15.17. . 

15.18. Find the length of the arc of the curve . 

15.19. Find the length of one arch of the cycloid: 

15.20. Find the loop length of the plane curve . 

15.21.  Find the perimeter of the hole formed by the circles 

і , ( ). 

III. Solve various problems on the topic of calculating the areas of flat

figures and the lengths of arcs of curves. 

15.22. Find the area of a figure bounded by a line 
4 4 2 2

x y x y   . 

15.23. Calculate the area of the loops of the curve given by the equation: 
4 2

( )x y x y  . 

15.24. Find the area of a figure bounded by line 

12 cos 5 sin ; 5 cos 12 sinx t t y t t    . 

15.25. Find the area of a figure bounded by line 
4

cos
6







 

 
 

, ;
6 3

 


 

 
 

. 

15.26. Calculate the length of the line  ( ) th , 0, 2
2

a


   
 

  
 

. 

15.27. Calculate the length of the line 
5 5

cos ; sin ; 0 .
2

x t y t t


   

15.28.  Calculate the arc length of the spatial curve 

,  0;1t  . 

2
2y x

2 2
8x y 

21 1
ln , 1

4 2
x y y y e    ln , 3 8y x x  

cos ; sin ; 0 ln
t t

x e t y e t t    
3

sin
3

a


 

4
( ) sin

4
a


  

( sin ), (1 cos ); 0 2x a t t y a t t      

2
arcsiny x x x  

( sin ); (1 cos ); 0 2 .x a t t y a t t      

2 31
: ;

3
L x t y t t

 
   

 

2 2
2x y ax 

2 2
2x y by  0a b 

 : cos ; sin ;L x a t t y a t t z at  
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15.29. Calculate the length of the line  
4 4

: cos , sin , 0, 0L x a t y b t a b    . 

15.30. Calculate the length of the line ( )
1 cos

r
 





, 

2


  . 

Answers and instructions 

15.1. 4,5.  15.2. 
5 4 5

41(arcsin arcsin ) 40 ln
441 41

  .  

15.3. .         15.4. .   15.5. .    15.6. . 

15.7. .   15.8. 
6

ab
.   15.9. .  15.10. . 

15.11. .       15.12. .   15.13. . 

15.14. .   15.15. .   15.16. .   

15.17. .    15.18. 2 .  15.19. .    15.20. . 

15.21. .    15.22. 2 .        15.23. 
1

210
. 

15.24. 169 .      15.25. 
8 3

3
.   15.26. (2 th )a   .   

15.27. 
5 ln(2 3 )

2
8 3

 
 

 

.    15.28. . 

15.29. 
ln(1 2 )

1
2


 .  15.30. 2 ln(1 2 )r   

 
. 

5
26

12
8 3 6

2
4a

8 15 2
2
( 2 1)a  

3 2

9 2









2
( 1) 4e 

1 3
1 ln

2 2


2 ( 1)  3 2a 16 3,  0 4a   

8a 8a 4 3

2( )
a

a a b arctg
b

  

5 3a
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PRACTICAL LESSON  16 

Application of the definite integral in geometric  

and physical problems (end). 

 

16.1. Calculation of body volume 

 

16.1.1. Calculation of the volume of the body  

by the areas of its cross sections 

 

The volume V  of a material body can be found if the cross-sectional areas 

 of this body are known in planes perpendicular to some axis, for example  

(Fig. 16.1), , .  

 

Fig.16.1 

The formula for this volume is as follows: 

,                                             (16.1) 

Example 16.1. Calculate the volume of the triaxial ellipsoid 

. 

The solution. Let’s fix a certain value of the appliqué  and write 

down the equation of the ellipse, which is formed when the given ellipsoid is cut 

by a plane  

. 

S OX

( )S S x a x b 

( )

b

a

V S x dx 

2 2 2

2 2 2
1

x y z

a b c
  

0
z z

0
z z

2 2

2 2

2 20 0

2 2

1

1 1

x y

z z
a b

c c

 
   

    
   

 

x+dx 

x 

S(x) 

X 

Y

x 

Z 

O 
a b 
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It is known that the area of a figure bounded by an ellipse  is 

calculated by the formula: , where . 

We use formula (16.1) to calculate the volume of the ellipsoid, taking into 

account that  was chosen arbitrarily and the index can be removed. Therefore, 

, and the volume differential has the form ( )dV S z dz ; then 

the volume  of the ellipsoid is equal to: 

. 

If  (that is, the ellipsoid turns into a sphere), then the volume 

of the latter is calculated according to the well-known formula: . 

Example 16.2. Calculate the volume of the body T  bounded by the 

paraboloid and the cone  2 2 2 2
: 2 ;T x y z x y z     . 

The solution. Draw a body T  yourself. This task is to apply formula (16.1) 

to calculate the volume V  of a body based on its cross-sectional areas. Let’s find 

the equation of the plane along which these two surfaces (paraboloid and cone) 

intersect: 

2
2 0 1z z z     . 

Thus, the body T  is bounded below by a cone, and above by a paraboloid, 

and these surfaces intersect in the plane 1z  . Note that in any section of the body 

T  in a plane parallel to the plane 0z  , we will have a circle of the corresponding 

variable radius: either z   (for a cone) or 2 z    (for a paraboloid). 

Therefore, using the considerations of the previous problem, we can write down 

the following integrals for calculating the body volume: 

2
1 2 2

2

0 1 1

1 (2 ) 5
(2 )

3 2 6

z
V z dz z dz


  

  
       
   

  . 

 

 

 

2 2

2 2
1

x y

a b
 

S ab

2 2

0 0

2 2
1 , 1

z z
a a b b

c c

   
      

   

0
z

2

2
( ) 1

z
S z ab

c


 
  

 

V

2 3

2 2

0 0

4
2 1 2

3 3

c
c

z z
V ab dz ab z abc

c c
  

   
       

   


a b c R  

34

3
V R
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16.1.2. Volume of bodies of rotation 
 

Let the curved trapezoid be bounded from above by the graph of the 

continuous function , . If this trapezoid is rotated around the 

axis, a spatial figure called a body of rotation will be formed (Fig. 16.2). 

 

 

Fig. 16.2 

Since the area of the parallel section of the figure at the point  is equal to 

, then, according to formula (16.1), the volume 
x

V  of the 

body formed by the rotation of this trapezoid around the axis  is calculated 

according to the formula: 

.                                        (16.2) 

If a curved trapezoid is bounded by the graph of a continuous function 

and straight lines , , , then the volume 
y

V  of the 

body formed by the rotation of this trapezoid around the axis  is found by the 

formula 

.                                        (16.3) 

( ) 0y f x  a x b 

x
2 2

( ) [ ( )]S x y f x  

OX

2
( )

b

x

a

V f x dx 

( ) 0x y  y c y d 0x 

O Y

2
( )

d

y

c

V y dy  

 

y=f(x) 

a 

b 

x 
X 

Y 

O 
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Example 16.3. Find the volume of the body formed by the rotation of the 

parabola  on the interval  around:  

a) the axis ;  

b) the axis . 

The solution. According to formulas (16.2) and (16.3), respectively, we 

obtain: 

; . 

 

16.1.3. Calculation of the surface area of rotation 

 

Let the curve given by the continuous function , , 

rotate around the axis . Let us cross the surface of rotation with two infinitely 

close planes that pass through the points  and  are parallel to the plane 

 (Fig. 16.3). 

 

Fig. 16.3 

Let’s replace the figure formed between the sections of the truncated cone, 

the generatrix of which is equal to , and the radii of the bases are 

equal to  and  If the height  of the cone is small, then the area 

2
y x 1 2x 

OX

O Y

22 5

4

1 1

31

5 5
x

x
V x dx


   

44 2

1 1

15

2 2
y

y
V ydy

 
  

( ) 0y f x  a x b 

OX

x x dx

OYZ

 
2

1dl y dx 

 y x   .y x dx dx

 dS

S 

y=f(x) 

x 
a b 

X 

Y 

O 

Z 
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 of the element of the lateral surface of this figure is equal to the area of the 

lateral surface of the truncated cone:  This is the 

differential of the element of the surface area of rotation. After its integration in 

the range from  to , we find the entire area of the surface of rotation:  

                                  (16.4) 

If the surface is formed by rotation around the axis of the curve  

defined by parametric equations 

, 

then, by replacing the variables under the sign of the definite integral in formula 

(16.4), we obtain the following expression for the area  of the entire surface: 

.                        (16.5) 

Example 16.4. Find the surface area  of a sphere with radius  

The solution. Let the sphere be formed by the rotation of a circle 

 around an axis  Consider part of the circle in the first quarter 

  By rotating it around the axis , we get only half of 

the sphere, which is located in the half-space 
3

R at 0x  . To calculate the surface 

area  of this half of the sphere, we apply the formula (16.4), where 

 
  

As a result, we get:  To find the surface area of the 

entire sphere, you need to double the result:
 

 So, we got the 

well-known formula for calculating the surface area of the sphere. 

Example 16.5. Find the area  of the surface formed by rotation around 

the axis of the cycloid, which is determined by the parametric equations: 

. 

The solution. According to formula (16.5), we get:  

 

dS

   
2

2 1 .dS y x y dx  

a b

   
2

2 1 .

b

a

S y x y dx  

OX L

( ), ( ), [ , ]x t y t t     

S

2 2
2 ( ) [ ( )] [ ( )]S t t t dt





      

S .R

2 2 2
x y R  .OX

2 2
,y R x   0; .x R OX

1 2
S

2 2
;

x
y

R x

  


2 2

;
Rdx
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R x





2 .dS Rdx

2

1 2

0

2 2 .

R

S Rdx R  

2

1 2
2 4 .S S R 

S

OX

( sin ), (1 cos ), 0 2x a t t y a t t      

2 3

2 2 2 22

0

64
2 ( ) [ ( )] [ ( )] 2 2 (1 cos )

3
S t t t dt a t dt a

 



            



211 
 

16.2. Application of the definite integral in physical problems 
 

16.2.1. Calculation of the work performed by  

the variable force when moving a material point 
 

Let a material point  move in a straight line along an axis  under the 

action of some variable force , and the vector of action of this force is 

collinear to the ort i  axis  Then, the work А  performed by the force  

when moving the point  from position  to position  is calculated 

according to the following formula: 

                                         (16.6) 

Let`s consider a more general case. Let a material point  under the 

action of some variable force ( , , )F x y z  move along a spatial curvilinear path L . 

When the variable force vector ( , , )F x y z  is three-dimensional, e.g.: 

( , , ) ( , , ) ( , , ) ( , , )F x y z P x y z i Q x y z j R x y z k      , 

and the elementary displacement vector, which is directed along the tangent to the 

curve L , is such that ds dx i dy j dz k       the work of the variable force on the 

curved path L is determined by the curvilinear integral, which has the following form: 

( )

L L

A F ds Pdx Q dy Rdz      .                        (16.6
*
) 

We will consider spatial problems of this type in the third semester. 

Example 16.6. The movement  of the helical spring under the action of 

the applied force F  is proportional to the modulus  of the applied force F F . 

Calculate the work of force F  when compressing the spring by 0.05 m, if to 

compress it by 0.01 m a force of  1 N. 

The solution. According to the condition of the problem, the modulus F  of 

force and displacement  of the end of the spring are related by the relation: 
 where  is some proportionality factor. We will express force  in 

newtons, and displacement  – in meters. 

First, we will find the value  At   So, we have the 

following equation relative to :  

Using formula (16.6), we get: 
0 ,05

20 ,05

0
0

100 100 0,125 joules
2

x
A xdx    

M ,O X

 F F x

.OX F

M x a ,x b

  .

b

a

A F x dx 

M

x

x

,F kx k  F

x

.k 0, 01x  1.F 

k 1 0, 01 100.k k  
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Example 16.7. It is known that the force  with which an electric charge 

 repels another electric charge  (of the same sign) that is at a distance r  from 

the first is calculated by the following formula: 

 

Calculate the work of the force  when moving the charge  from a point 

1
M   that is far 

1
r  from the charge  to a point 

2
M  that is far 

2
r  from the charge . 

Assume that the charge  is at the point 
0

M  chosen as the initial reference point. 

The solution. Using formula (16.6), we get: 

 

If 
2

r    the work  is calculated as follows: 

 

If 
2

1e   then  This last value is called the potential of the force 

field formed by the charge 
1

e .  

Example 16.8. Calculate the work  that must be done to raise a body 

with a mass from the surface of the Earth vertically upwards to a height of , 

if the radius of the Earth is equal to . What work  must be done to raise the 

same body to an infinite height  (i.e )? 

The solution. According to Newton's law, the module of the force F  of 

attraction of the body by the Earth 

, 

where the mass of the Earth; gravity table; the distance from the 

center of the body to the center of the Earth. Let , then , 

where . 

When  this force is equal to the weight of the body: , that 

is 

. 

So, the law of interaction between the body and the Earth has the following form:  

F

1
e

2
e

1 2

2
.

e e
F k

r


F
2

e

1
e

1
e

1
e

22
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. 

The elementary work that needs to be done to raise a body from the Earth’s 

surface vertically upwards to a height of dx , will be equal to: ( )dA F x dx . To 

find the complete work A , you need to integrate this work differential in the 

range from R  to R H : 

. 

If we put  in this formula, we get: . 

Example 16.9. Calculate the work that must be done to pump liquid from a 

conical tank turned upside down. The radius and height of the cone are equal to 

 and , respectively, and the density of the liquid is  . 

The solution. Let’s consider the elementary liquid layer located at a depth 

of , a cylinder that has a height  and a radius  (Fig. 16.4). 

Then the weight differential  of the elementary liquid layer is equal to 
2

dP gdV g y dx    , where   is the density of the liquid,  is the 

acceleration of free fall, and is the volume of the elementary cylinder. From 

the similarity of triangles  and , we express  through : . 

Therefore, the weight differential  of the elementary liquid layer is equal to: 
2 2

2

( )g R H x dx
dP

H

  
 . 

 
Fig. 16.4 

The elementary work dA  that must be done to raise this elementary layer of 

liquid to a height of , is equal to: 

2 2

2

( )g R H x xdx
dA

H

  
 . 

This elementary work dA  is a work differential A . Therefore, the total 

2 2
( )F x mgR x




2 2

R H

R

mgRH
A mgR x dx

R H




 




H   A mgR

R H

x dx y

dP
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AOD CBD y x
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y H x




dP

x



214 
 

work required to pump out all the liquid from the conical tank is equal to the 

definite integral calculated over the entire height of the conical tank: 

2 2 2 2 2

2

2 2

0 0

( )
( )

12

H H
gR H x xdx g R gR H

A H x xdx
H H

   
     . 

 

16.2.2. Calculation of the pressure force of a liquid  

on a vertical wall (plate) immersed in it 

 

To calculate the force of liquid pressure on a horizontal plate, we will use the 

well-known law of B. Pascal. According to it, the force of liquid pressure  on a 

horizontal plate is equal to its area S  multiplied by the depth h  of immersion, the 

density  of the liquid and the acceleration g  of free fall: P ghS  [8; 15; 19]. 

If the plate is immersed in the liquid at a certain angle, then its different 

points will lie at different depths, and this formula cannot be used. However, if 

the plate is very small vertically, then all its points lie at almost the same depth, 

which is considered the depth of immersion of the plate. This makes it possible to 

divide the plate vertically into horizontal elementary areas (layers), find the 

pressure force differential on the elementary area of this plate, and then calculate 

the pressure force on its entire surface by integration along the vertical 

coordinate. 

Example 16.10. Find the pressure force  on a vertical plate that has the 

shape of an equilateral trapezoid  (Fig. 16.5) with an upper base , a 

lower base  and a height and which is immersed in a liquid to a depth  The 

density of the liquid is . 

 

Fig. 16.5 

The solution. Let the horizontal elementary platform be at depth   

(Fig. 16.5). Let’s introduce the following notations:   

  

The area of the horizontal elementary platform is calculated as follows: 

P



P

ABCD a

b h .c



x

,AB a ,DC b ,QB h

,OG c ( ).EF l x
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where  – is determined from the similarity of triangles  

and  

Then the expression for the area of the horizontal elementary platform takes 

the following form: 

 

Now, on the basis of Pascal’s law, we will write down the expression for 

the pressure force on this horizontal elementary platform (pressure force 

differential): 

 

After that, we can find the force of fluid pressure on the entire vertical plate 

 if we integrate the last expression for  by the variable  in the range 

from  to : 

 

If the parameters of the problem are chosen as follows:  m, 

 m, then the magnitude of the pressure force  on the plate will be equal to 

 (newtons). 

 

16.2.3. Calculation of the center of mass of  

a non-homogeneous rod 

 

Let’s recall the problem of calculating the mass of a non-homogeneous rod, 

presented in the lecture material. There was derived a formula for calculating the 

mass of the rod through the limit of integral sums in the following form ( ( )x 

linear density of the rod material): 

0
1

lim ( )

n

i i

i

m x


 




   , де .                         (16.7) 

 

If we go to the limit in formula (16.7), then the mass of the non-

 2 ,dS a l dx 

   
2

b a
l x x c

h


  BQC

.BEF

  .
b a

dS a x c dx
h

 
   
 

  .
b a

dP g a x c xdx
h


 

   
 

ABCD dP x

c c h

   
2

2 .
2 6

c h

c

b a a b h
P g a x c xdx ch a b g

h
 


   

        
   



1a c h  

2b  P

7

3
P g

1,

max
i

i n

x


 



216 
 

homogeneous rod is calculated through the definite integral: 

( )

b

a

m x dx  .                                             (16.8) 

To find the center of mass of the rod, we will again use the method of 

integral sums and the well-known formula for calculating the coordinates  of 

the center of mass of the system  of material points that have masses  

and are located at the points of the axis . Let’s write this formula: 

.                                   (16.9) 

Let’s consider an arbitrary division of the segment  by points 

. 

Let’s calculate the mass  of the part of the rod located on the elementary 

segment . Using formula (16.8) for the elementary segment , we 

obtain:

1

( )

i

i

x

i

x

m x dx



  . Let’s apply the Theorem about the average value of a 

function on a segment : ( )
i i i

m x   , where 
1i i i

x x x


   . 

Assuming that the mass  of an elementary segment  is 

completely concentrated in some point , one can identify a non-

homogeneous rod with a system of material points with masses  

1
1 1

( ) ( ) ,

i

i

x bn n

i

i i x a

m x dx x dx m 


 

       

then, using formula (16.9), we find an approximate expression for the coordinate 

 of the center of mass of a non-homogeneous rod 

1

( )

n

i i i

i

c

x

x
m

  







.                                        (16.10) 

The expression in the numerator of the right-hand side of relation (16.10) 

represents the integral sum for the function ( )x x  on the segment . 

Therefore, in accordance with the above considerations and moving to the 

limit of the integral sum in the numerator (16.10), we determine the coordinate  

of the center of mass of the non-homogeneous rod by the formula 

c
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( ) ( )

b b

c

a a

x x x dx x dx    .                              (16.11) 

Example 16.11. Find the mass of a rod 100 cm long, if its linear density 

varies according to the law of 2
( ) (12 0, 24 )x x x   g/cm, where  is the 

distance from one of the ends of the rod, which is located at the origin. Find the 

coordinate of the center of mass of the rod. 

The solution. Calculate the mass of the rod using formula (16.8): 

 
100100 100

2 2 3

0 0 0

( ) (12 0, 24 ) 6 0, 08 140m x dx x x dx x x        kg. 

Now we will find the value of the numerator written in formula (16.11): 

 
100100 100

2 3 4 7

0 0 0

( ) (12 0, 24 ) 4 0, 06 10J x x dx x x x dx x x        g* cm. 

According to formula (16.11), we calculate the coordinate  of the center 

of mass of the rod: 

7

4

( )
10

71, 43
14 10

( )

b

a

c b

a

x x dx

x

x dx





  





 

cm. 

 

16.2.4. Calculation of CM of symmetric flat figures 

 

Example 16.12. A homogeneous plate with a constant surface density 

( , )x y const   lying in a plane OXY , bounded by a curve 2
4y x   and an axis 

OX . Find the coordinates of the CM of this plate (Fig. 16.6). 

The solution. We denote the area formed by this plate in the plane OXY  by 

D . We work according to well-known formulas from physics (mechanics), which 

establish the dependence of the location of the CM of a flat body in the plane 

OXY  depending on the geometric and mass characteristics of the body: 

;

d b

c a

С С

y dm x dm

y x
m m

 

 

 
; ( )

b b

D

a a

m dm y x dx S     .        (16.12) 

 

x 

c
x
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2 1 0 1 2
0

1

2

3

4

y x( )

x
 

Fig. 16.6 

The integrals in the numerators of formulas (16.12) are called static 

moments relative to the corresponding coordinate axes: 
d

OX

c

M y dm  - static 

moment of the plate relative to the axis OX , and 
b

OY

a

M x dm 
 
– static moment 

of the plate relative to the axis OY . Since the plate is symmetrical about the axis 

OY  and is homogeneous, we have: 0
С

x  . So you only need to find 
С

y . 

Let’s write down the expression for the mass element dm . We will divide 

our plate vertically into horizontal strips, and for a certain value y  we will choose 

one of these strips with height dy . We consider that each elementary strip is a 

rectangle. The width of this rectangle at the height y  will be equal to: 2 4x y  . 

Obviously, this width is variable if the ordinate varies from 0 to 4. Therefore, to 

find the formula for the elemental mass dm  of this strip, you need to multiply the 

surface density const   by the area element dS , namely: 

2 4dm dS y dy    .                                (16.13) 

Substitute expression (16.13) into formula (16.12) for 
d

OX

c

M y dm  , where 

the integration interval is as follows [0, 4] : 

4

0

256
2 4

15
OX

M y ydy


   
. 

Now it remains to find the mass of the plate: 
2 2

2

2 0

32
2 (4 )

3
m dm x dx






     . 
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For the calculation 
С

y , it remains 
O X

M  to divide by the mass m : 

256 3 8

15 32 5
С

y   

 (linear units). 

Example 16.13. Find the mass of the body bounded by the single-cavity 

hyperboloid 
2 2 2

2 2 2
1

3 4 2

x y z
   , the planes 0z   and 1z   . Assume that the density 

of the material of the body is given by the formula 2
z  . 

The solution. Make a drawing of the body yourself. We will use the same 

approach as at the beginning of this practical session. Let’s cut the body into 

planes parallel to the plane 0z  , and calculate the mass of the elementary layer 

of such a division. Let the thickness of such a layer be equal to dz . The boundary 

of each such section of the body will represent an ellipse, the equation of which 

has the form  

2 2

2 2

2 2

2 2

1

3 1 4 1
2 2

x y

z z
 

 

, 

the variable semi-axis of which are aligned accordingly: 
2

2
3 1

2

z
a     and 

2

2
4 1

2

z
b    . It is known that the area of a flat region bounded by an ellipse is 

equal to: 

2 2

2

2 2
( ) 3 1 4 1 6 ( 4)

2 2

z z
S z ab z            . 

Considering the elementary layer of the body as a straight elliptical cylinder 

with height dz , we calculate its elementary volume: 

2
( ) 6 ( 4)dV S z dz z dz   . 

Now you can find an expression for the mass element  

2 2
( ) 6 ( 4)dm z dV z z dz     

and calculate the mass m  of the entire body by integrating it along the vertical 

coordinate z  as follows: 

1 1

2 2

0 0

46
( ) ( ) 6 ( 4)

5
m S z z dz z z dz


      . 
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Tasks for classroom and independent work 

 

16.1. The ellipse 2 2
4 9 36x y   rotates around the axis a) OX ; b) O Y . 

Find the volumes of the corresponding ellipsoids of rotation that are formed. 

16.2. Find the volume of the body formed by rotation around the axis 

of the figure bounded by the lines  and .  

16.3. Find the volume of the body formed by the rotation of the figure 

bounded by the lines  and  around the axis: a) ; b) . 

16.4. A semi-infinite curvilinear trapezoid, which is formed by a curve 

and its asymptote, rotates around the axis . Find the volume of the 

body formed by such rotation.  

16.5. The curve  ( ) rotates around the axis . Find the 

volume of the body formed by such a rotation. 

16.6. An infinite curvilinear trapezoid, which is formed by the curve

 
 and its asymptote, rotates around the axis . Find the volume of the 

infinite “spindle” formed during such rotation.  

16.7. Find the volume of the body formed by rotation around the axis  

of the figure bounded by one arch of the cycloid 

 and .  

16.8. Find the volume of the body formed by the rotation of the loop area of 

the curve  around the axis: a) ; b) .  

16.9. Find the volume of the body formed by rotation around the polar axis 

of the figure bounded by the closed curve .  

16.10. Find the area of the surface of rotation around the axis of the 

curved trapezoid bounded by the curve  and the axis  on the segment 

.  

16.11. Find the surface area of the part of the paraboloid formed by the 

rotation around the  axis of the parabola .  

16.12. Find the area of the surface formed by the rotation of one arch of the 

cycloid around the axis .  

16.13. What work must be done to stretch the spring by 4 cm, if it is 

stretched by 1 cm by a force of 1 N? 

16.14. Calculate the work that must be done when oil is pumped through 

the upper hole from the tank. The tank is completely filled, has the shape of a 

OX

2
2 y x 2 2 3 0x y  

2
2y x x  0y  OX O Y

x
y x e


 OX

x
y e


 0x  O Y

2

1

1
x

y



O Y

OX

( sin ),  (1 cos );  0 2x a t t y a t t       0y 

2 3
2 ,  4x t t y t t    OX O Y

3
sin

2
a


 

OX

siny x OX

[0, ]x 

OX
2

4 , 0 3y ax x a  

( sin ),  (1 cos );  0 2x a t t y a t t       O Y
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cylinder with a horizontal axis, the density of oil  , the length of the tank h  and 

the radius R .  

16.15. Calculate the work that must be done to pump liquid bitumen through 

the top of a hemispherical fairy of radius R (the density of liquid bitumen  ). 

16.16. Find the force of pressure on a vertical plate immersed in water in 

the form of an equilateral triangle with height h . The base of the triangle is equal 

a  and lies on the surface of the water. 

16.17. Solve the same problem 16.16, only under the condition that the top 

of the triangle is located on the surface of the water, and the base of the triangle is 

parallel to the surface of the water. 

16.18. Find the mass and coordinate of the center of mass of a rod 100 cm 

long, if the linear density of the material of the rod varies along its length 

according to the law of 2
( ) (20 0,15 )x x x   g/cm, where x  is the distance 

from one of the ends of the rod, which is located at the origin of the coordinates. 

16.19. The speed of movement of a body thrown vertically upward with an 

initial speed 
0

v , without taking into account air resistance, is equal to 
0

v v gt  , 

where t  time, g  is the acceleration of free fall. To what maximum height will 

the body rise? 

16.20. The speed of movement of the body has the form: 0 ,02
( ) 0,1

t
v t e


  

(m/s). Find the path that the body will take from the beginning of the movement 

to its complete stop.  

16.21. A homogeneous plate with a surface density ( , )x y const    lying 

in a plane OXY , bounded by a curve 2 2
y R x   and an axis OX . Find the 

coordinates of the CM of this plate. 

16.22. Find the mass of the body bounded by an unlimited elliptic 

paraboloid 
2 2

2 2
1

4 5

x y
z    . Assume that the density of the material of the body 

is given by the formula 
3

1

1z
 


. 

16.23. Find the mass m  of a body bounded by a two-cavity hyperboloid 
2 2

2

2 2
1

5 2

x y
z    , provided that 1z  . Assume that the density of the material of 

the body is given by the formula 
2

z
ze


 . 

16.24. Find the volume of the body of revolution of the plane region

 : 0 2 ; ( ) (1 cos )D a         around the polar axis 0  . 

16.25. Prove that in the polar coordinate system the volume of a body of 

rotation around the polar axis of a curved sector 



222 
 

 : 0 ; 0 ( )D             , where ( , )   are the polar coordinates, 

calculated by the formula: 

32
( ) sin

3
V d






     . 

 

Answers and instructions 

 

16.1. a) ; b) .     16.2. .       16.3. a) ; b) .   

16.4. 
4


.           16.5. .         16.6. .        16.7. .   

16.8. a) ; b) .            16.9. .    16.10. 2 ( 2 ln(1 2 ))   .   

16.11. .  16.12. . 16.13. 
1

8
.           16.14. 

3
ghR .  

16.15. 
4

4

gR
. 16.16. .       16.17. .       16.18. 69,44 cm. 

16.19. .       16.20. 250 m.    16.21. 
4

0;
3

R



 
 
 

. 16.22.  
20

ln(4)
3


.  

16.23. 
5

m
e


 . 16.24. 38

3
V a . 

 

24

3
ab

24

3
a b

272

15


16

15


8

3


2
2

2
2 3

5 a

64

35


64

105


38

33
a

256

3
a 2 2

16 a

2

6

ah
2

3

ah

2

0

2

v

g
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Topic III. Improter integrals of the first and second kind 

 

PRACTICAL LESSON  17 

Improper integrals of the first kind 

 
17.1. Basic concepts and definitions,  

geometric meaning. Cauchy criterion 

 

Improper integrals of the first kind are also called integrals with infinite 

limits of integration. 

Let the function  be defined and continuous for any values of 

 Let us consider the definite integral  with a variable 

upper limit . This integral has meaning for any value of . When the upper 

limit  changes, the integral ( )F b  changes and is a continuous function of its 

variable upper limit . Consider the behavior of this integral at  (Fig. 17.1). 

 

Fig. 17.1 

Definition. The improper integral of the first kind of a function  on 

the interval  is called the limit of the integral  at  

and is denoted by the symbol 

.                               (17.1) 

If the limit (17.1) exists, then it is said that the improper integral  

exists or is convergent. If the integral  at  has no finite limit, it 

is said that the improper integral  does not exist or is divergent. 

( )f x

[ ; ).x a  ( ) ( )

b

a

F b f x dx 

b b a

b

b b  

( )f x

a x   ( )

b

a

f x dx b  

( ) lim ( )

b

b
a a

f x dx f x dx



 

 

( )

a

f x dx





( )

b

a

f x dx b  

( )

a

f x dx
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Let’s find out the geometric meaning of the improper integral of the first 

kind. Consider the case when . If the integral  is equal to the 

area of the region bounded by the curve , the abscissa axis and the 

ordinates , , then it is natural to assume that the improper integral 

 is equal to the area of the unbounded (infinite) region contained 

between the lines: , ,  and  (Fig. 17.1). 

Analogously to the integral , the concept of an improper integral 

of the first kind with an infinite lower limit (that is, on the interval ) is 

introduced: 

.                                   (17.2) 

The improper integral with two infinite limits is defined by the equality: 

,                           (17.3) 

where  – is an arbitrary real number. 

The integral on the left in formula (17.3) exists or is convergent only when 

both integrals on the right are convergent. 

Remark. It follows from the definition that the improper integral is the 

limit of a definite integral with a variable limit of integration. 

The Cauchy Criterion is used to study improper integrals of the first kind. 

Theorem 17.1 (Cauchy Criterion). In order for the improper integral 

(17.1) to be convergent, it is necessary and sufficient for an arbitrary number 

 to find a number  such that for any numbers  and  the 

inequality holds 

.                                     (17.4) 

Formula (17.4) establishes that in order for the improper integral (17.1) to 

converge, it is necessary and sufficient that its “tail” (17.4) be infinitely small 

(that is, smaller than an arbitrary positive number ) if both limits of integration are 

moved to infinity. 

Let us consider the simplest examples of integration of improper integrals 

of the 1st kind. 

( ) 0f x  ( )

b

a

f x dx

( )y f x

x a x b

( )

a

f x dx





( )y f x x a x   0y 

( )

a

f x dx





( , ]b

( ) lim ( )

b b

a
a

f x dx f x dx




 

( ) ( ) ( )

c

c

f x dx f x dx f x dx

 

 

   

c

0  a 
1

b  
2

b  

2

1

( )

b

b

f x dx 
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Examples 17.1. 

a) ; 

b) ; 

c) ; 

d) ; 

e) ; 

f) 
2

1

ln x
dx

x



 . 

The solution. 

a) By definition, we have: 

. 

b) Using the parity of the integral function and the result of the previous 

task, we get 

. 

The given integral is convergent. 

c) By definition, we have: 

. 

The limit  at  does not exist, so this integral is divergent. 

d) Let’s calculate according to the definition: 

. 

e) Let us show that the given integral is convergent. 

.

 

2

0
1

dx

x






2
1

dx

x








0

cos 2 xdx





0

x
e dx





2

2

1 1
sin dx

x x




 
  

 


2 2 0

0 0

lim lim arctg lim arctg arctg 0
1 1 2

b
b

b b b

dx dx
x b

x x




     

    
 

 

2 2

0

2 2
1 1 2

dx dx

x x




 



   
 

 

0 0

01 1
cos 2 lim cos 2 lim sin 2 lim sin 2

2 2
aa a a

a

xdx xdx x a
    



    

sin 2a a  

0

0

lim lim 1
b

x x b

b b

e dx e e



  

    

2

2 2 2

1 1 1 1 1 1
sin sin lim cos lim cos cos 1 0 1

2

b

b b

dx d
x x x x x b
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f) By definition, we have: 

2 2
1 1 1

1 1

ln 1 ln 1
ln 1

x x dx
dx x d

x x x x x

 

  
     

             
     

   . 

The given integral is convergent. 

Example 17.2. Let’s clarify the question at which values of the exponent 

 the improper integral , , is convergent. It is often used for 

comparison with other improper integrals as a test. 

The solution. Let , then 

. 

 1 1
1

, 1;
1

lim
1 , 1

1

b

if

b a a
if

 




 


 


 

 


  
 



. 

Let , then 

. 

Therefore, when  the given integral is divergent, when  – is 

convergent. 

 

17.2. Comparison signs for improper integrals of the first kind 

 

Theorem 17.2 (sign of comparison by inequality). If for two functions 

 and  for all ,  the inequality holds 

,                                          (17.5) 

then the convergence of the integral  follows from the convergence of 

the integral ; and conversely, the divergence of the integral  

follows from the divergence of the integral . 

Theorem 17.2 has the following geometric meaning (Fig. 17.2): if the area 

of the larger unlimited region is a finite number, then the area of the smaller 

0 

a

dx

x




 ( 0)a 

1 

 1 1 11 1

1 1

b
b

a

a

x dx x b a
   

 

   
  

 


1 

 lim lim ln lim ln ln

b
b

ab b b
a

dx
x b a

x    

    

1  1 

( )f x ( )g x x ( )x a

0 ( ) ( )f x g x 

( )

a

f x dx





( )

a

g x dx



 ( )

a

g x dx





( )

a

f x dx
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region is also a finite number; if the area of a smaller region is an infinitely large 

value, then the area of a larger region is also an infinitely large value. 

Example 17.3. Check whether the integral is convergent . 

 

Fig. 17.2 

The solution. Let’s choose a test integral  for comparison. Note that 

when , the inequality  holds. The test integral  is 

convergent because 

. 

Therefore, according to Theorem 17.2, the given integral is also 

convergent, and its value is less than 1. 

Example 17.4. Investigate the convergence of the integral . 

The solution. Note that . 

However, the test integral  is divergent: 

. 

Therefore, the given integral is also divergent. 

Example 17.5*. Investigate the convergence of the Fresnel integral 

2

0

sin( )x dx



 . 

2

1
( 1)

x

dx

x e






2

1

dx

x





1x 
2 2

1 1

( 1)
x

x e x



2

1

dx

x





11
1

lim
1

limlim

11

2

1

2

























Axx

dx

x

dx

A

A

A

A

A

2

3

1

sinx x
dx

x







2

3 3

sin 1x x x

xx x


 

1

dx

x





1
1

lim 2
A

A

dx
x

x



 

  

 
f(x) 

X 

Y 

O 

g(x) 
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The solution. Let’s replace the variables 2
, ,

2

dt
t x x t dx

t
   . At the 

same time, the limits of integration will not change. Then the integral will take the 

following form: 

2

0 0

1 sin
sin( )

2

t
x dx dt

t

 

  . 

Using additivity, we break the integral into the sum of two integrals: 

2

0 0 2

sin sin sint t t
dt dt dt

t t t





 

    .                             (17.6) 

The first of the two integrals on the right-hand side of expression (17.6) is 

an ordinary definite integral, since 
sin

0
t

t
  by 0t  . We apply integration by 

parts to the second integral from (17.6): 

3 3
2 2

22 2 2
3

2

1
; sin ;

sin cos 1 cos 1 cos

2 2
; cos

2

u dv tdt
tt t tdt tdt

dt
dtt t t tdu v t

t

  

  
 

     

   

   . (17.7) 

The last integral in expression (8) is convergent, since the following 

inequality holds 

3 3
2 2

cos 1t

t t

 , 

and the integral 
3

2
2

dt

t



  is convergent. Therefore, the integral 
3

2
2

cos tdt

t



  is also 

convergent by the sign of comparison by inequality, and accordingly, the given 

Fresnel integral is also convergent. 

Theorem 17.3 (limit sign of comparison). If there is a limit 

, , ( ),               (17.8) 

then the convergence (divergence) of one of the integrals ,  

implies the convergence (divergence) of the second. Thus, when  both 

integrals are simultaneously convergent, or both are simultaneously divergent. 

 

( )
lim

( )x

g x
K

f x

 0 K   ( ) 0, ( ) 0f x g x 

( )

a

g x dx



 ( )

a

f x dx





0 K  
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Example 17.6. Investigate the given integral for convergence 

. 

The solution. Let’s use Theorem 17.3 and consider the limit of the 

relationship between the given function  and the test function . As 

a result, we have: 

2 2

2 2

2 2 2

ln(1 ) ,2 1
lim ln lim ln 1 lim 1

01 1 1x x x

x x
x x

ifx x x

 

  

        
           

        

. 

Since the test integral  is convergent, the given integral is also 

convergent by the limit sign of comparison. 

Example 17.7. Investigate the given integral for convergence 

1

2
1 cos dx

x



 
 

 
 . 

The solution. Let’s use Theorem 17.3 and consider the limit of the 

relationship between the given function 
2

1 cos
x

  and the test function . As a 

result, we have: 

2
2

2 2

2 2
2 21 cos

cos 1 .
lim lim 2

1 1x x

x x
x x

if x
x x

  


 

  

 

. 

Since the test integral  is convergent, the given integral is also 

convergent by the limit sign of comparison. 

 

 

 

 

 

 

 

 

2

2

1

2
ln

1

x
dx

x


 
 

 


2

2

2
ln

1

x

x

 
 

 
2

1

x

2

1

1
dx

x





2

1

x

2

1

1
dx

x
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17.3. The concept of absolute and conditional convergence 

improper integrals of the first kind 

 

In Theorems 17.2 and 17.3, integrals of integral functions were considered. 

For a function  that changes sign on an infinite interval, the following 

Theorem holds: 

Theorem 17.4. If the integral  – is convergent, then the integral 

 is also convergent. 

The proof of Theorem 17.4 follows immediately from the inequality: 

. Thus, by the sign of comparison by inequality (Theorem 17.2), the 

convergence of the improper integral of the function  follows from the 

convergence of the improper integral of the function . So, we have: 

. 

Definition. If, together with a convergent integral , the integral 

 is also convergent, then the integral  is called absolutely 

convergent. 

Definition. If the integral  is convergent and the integral 

 is divergent, then the integral  is called conditionally 

convergent. 

Example 17.8. Investigate the convergence of the integral . 

The solution. Here the integrand function changes sign. Note that 

, but the test integral  is convergent, since: 

( )f x

 
a

f x dx





 
a

f x dx





( ) ( )f x f x

( )f x

( )f x

   
a a

f x dx f x dx

 

 

 
a

f x dx





 
a

f x dx



  
a

f x dx





( )

a

f x dx





( )

a

f x dx



 ( )

a

f x dx





3

1

sin xdx

x





3 3

sin 1x

x x


3

1

dx

x
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. 

Therefore, the test integral is convergent, and therefore the given integral is 

also convergent, and absolutely. 

In some cases, it is necessary to investigate the convergence of improper 

integrals in which the integrand is the product of two functions. In this case, the 

following theorem will be useful. 

Theorem 17.5 (Dirichlet’s sign for studying the convergence of the 

integral ( ) ( )

a

f x g x dx



 ). 

Let the following conditions be fulfilled: 

1) The function  is integral in any interval , and the 

integral 

 

is bounded for any . 

2) The function  is continuously differentiable with respect to  

and, monotonically decreasing, goes to zero with respect to 

. 

Then the improper integral 

                                                                             (17.9) 

is convergent. 

Example 17.9. Investigate the important Dirichlet integral for convergence:  

sin
( )

a

x
F a dx

x



  . 

The solution. The given integral has the form (17.9). Let’s put , 

and 1
( )g x x


 . It is obvious that , and 

, at the same time 1
( )g x x


  monotonically goes to zero. 

Therefore, the given integral is convergent and if 0a  , then it is equal to 

(0) 2F  . This result was first obtained by Dirichlet. 

 2 2

3 3

1 1 1

1 1 1 1
lim lim lim

2 2 2 2

AA

A A A

dx dx
x A

x x



 

     

 
       

 
 

( )f x [ , ] [ , )a b a 

 
b

a

f x dx M

b a

g( )x x a

x  

( lim ( ) 0)
x

g x
 



  ( )

a

f x g x dx





( ) sinf x x

sin cos cos 2

A

a

xdx a A  

1
lim ( ) lim 0
x x

g x
x 
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17.4. The concept of the principal value 

of improper integrals of the first kind 

Let the function  be defined on the entire number line  and 

integrable on any segment . 

Definition. If there is a limit 

, 

then it is called the principal value of the improper integral and is denoted as 

follows: 

. 

Certificate. Notation means an abbreviated record of a phrase 

«Valeur principal». 

So, by the definition of the principal value, we have: 

.        (17.10) 

Example 17.10. Find the principal value of the integral . 

The solution. It is not difficult to check that the improper integral is 

divergent in the usual sense. But, 

. 

Tasks for classroom and independent work 

I. Calculate improper integrals: 

17.1. . 17.2. . 

17.3. . 17.4. . 

( )f x ( , ) 

[ , ] ( , )a b   

lim ( )

R

R
R

f x dx






. . ( )V p f x dx







. .V p

. . ( ) lim ( )

R

R
R

V p f x dx f x dx




 

 

2

1

1

x
dx

x










2

2

1 1
. . lim arctg ln(1 ) lim 2 arctg 2

1 2 2

R

R R
R

x
V p dx x x R

x






   
 

  
       

  


2 3 2

0 (1 )

arctgx
dx

x






3 2

3 9

dx

x x






7

1

arctg x
dx

x



 2
3

1 ( 1)

dx

x x
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17.5. .                                    17.6. 
2

4
0

1

1

x
dx

x

 


 . 

17.7. 
10 5

1 1

dx

x x x



 
 .                                    17.8. 

2 2
0

ln

( 1)

x x
dx

x




 . 

17.9. 
2 2

( 4 5)

dx

x x



  
 .                                  17.10. 

2
1 1

dx

x x x



 
 . 

II. Investigate the convergence of improper integrals: 

17.11. .     17.12. . 

17.13. .  17.14. . 

17.15. 
2

0

sin x
dx

x



 .                                            17.16. 
23

1 1

dx

x x




 . 

17.17. 
0

ln( 1)

n

x
dx

x

 
 .                                        17.18. 

0

cos( )

1
n

ax
dx

x




 . 

 III. Investigate the absolute and conditional convergence of integrals: 

17.19. .       17.20. 
0

sin( ) , 0
p q

x x dx q


 . 

17.21. 
3

0

sin x
dx

x



 .                                            17.22. 
0

1
sin

n

x
x

dx
x



 
 

 
 . 

IV. Find the principal values of improper integrals of the first kind: 

17.23. .     17.24. . 

17.25. .               17.26. . 

17.27. .                               17.28. . 

17.29. Calculate the integral  using the well-known Dirichlet 

integral: . 

2

2

0

2
ln

1

x
dx

x


 
 

 


6

1 5

xdx

x




 3

1

ln x
dx

x





2 2

0

sin( )
; 0; 0

x ax dx
a b

x b



 



2

(2 sin ln )x x dx

x


 



2

0

cos( )
x

x e dx





. . arctgV p xdx






2

. . arctgV p x x dx





 

. . sinV p xdx






4

. . arctgV p x xdx







2

0

. .
3 2

dx
V p

x x



 
 2

2

. .
1

dx
V p

x



 


2

2

0

sin xdx

x





0

sin

2

xdx

x
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17.30. Calculate the integral 
0

x
e dx

x

 

  using the well-known Poisson 

integral: 
2

0
2

z
e dz





 . 

17.31. Calculate the integral 
0

(1 )
x

e dx

x x

 


  using the well-known Poisson 

integral: 
2

0
2

z
e dz





 . 

17.32. Calculate the integral 
1

0 4

x
e dx

x

 

  using the gamma function 

1

0

( )
z

e z dz






 
   . 

17.33. Calculate the integral 
5

0 4

(1 )
x

e dx

x

 


  using the gamma function 

1

0

( )
z

e z dz






 
   . 

17.34. Calculate the mass of the body formed by rotation around the axis 

ОХ  of the curved trapezoid formed by the lines: 
1

4( ) , 0, 0,y x x y x x
 

     
 

. 

Assume that the density of the body material is equal to: 
2

( ) ln(1 )x x


  . 

 

Answers and instructions 

 

17.1. .            17.2. 108 .  17.3. .  17.4. 
2 3

3


.  17.5. ( 2 1)  . 

17.6. 
2


.               17.7.  

1 2
ln 1

5 3

 
 

 
.      17.8. 0 .         17.9. 

2


. 

17.10. 
2

ln 1
3

 
 

 
. 17.11. Convergent.           17.12. .   

17.13. Convergent. 17.14. Divergent.          17.15. Divergent.   

17.16. Convergent. 17.17. Conditionally convergent 1 2n  .   

17.18. Conditionally convergent under the condition  0, 0n a  .   

2 1 
13

90

0, 25
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17.19. Convergent. 17.20. Convergent absolutely under the condition 

1
1 0

p

q


   , convergent conditionally under the condition 

1
0 1

p

q


  .  

17.21. Conditionally convergent. 

17.22. Convergent conditionally under the condition 0 2n  .   

17.23. 0.  17.24. 0.     17.25. 0.       17.26. 0.        17.27. 
1

ln
2

 
 
 

.   

17.28. 0.  17.29. 
2


. 17.30.  .  17.31. 2  .  17.32. 

3

4

 
  
 

.   

17.33. 
3

4
4

 
  
 

.         17.34. 
2

2 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



236 
 

PRACTICAL LESSON  18 

Improper integrals of the second kind 

 

18.1. Basic concepts and definitions.  

Three types of singular points  

and three cases of improper integrals 

 

Let us consider three cases of improper integrals of unbounded functions: 

1) functions with a singularity at the point  of the integration interval 

; 

2) functions with a singularity at the point  of the integration interval 

; 

3) functions with a singularity in the middle of the integration interval 

. 

The first case. Let the function  be defined and integrable in any 

interval , , but unbounded in every interval 

 to the left of the point . In other words, the function  has a 

discontinuity of the second kind at a point . The point  is called a special 

point of the function  (Fig. 18.1). Consider an integral with a variable upper 

limit, which is some function of the argument : 

. 

Definition. The limit of the integral  (or the limit of the function 

) at ,  (finite or infinite) is called an improper integral 

of the second kind on the interval  from an unbounded function  with a 

singularity at a point x b and is denoted by the symbol 

.                                 (18.1) 

If the limit (18.1) is finite, then the integral is said to be convergent, and the 

function  is integrable on the interval . If the limit (18.1) is infinite or does 

not exist, then the integral is said to be divergent, and the function is non-integrable. 

The second case. Let the function  be unbounded at the left end of 

the segment  (at ), in other words, it has a discontinuity of the second 

kind at the point  (Fig. 18.2). 

b

[ , ]a b

a

[ , ]a b

[ ; ]c a b

( )f x

[ , ] [ )a b a,b  (0 ]b a  

[ , )b b b ( )f x

b b

( )f x

(0, ]b a  

( ) ( )

b

a

F f x dx







 

( )

b

a

f x dx





( )F  0  (0, ]b a  

[ , ]a b ( )f x

0

( ) lim ( )

bb

a a

f x dx f x dx









 

( )f x [ , ]a b

( )f x

[ , ]a b x a

x a
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Fig. 18.1                                                        Fig. 18.2 

Definition. An improper integral of the second kind on the interval  

from an unbounded function  with a singularity at a point  is called a 

finite or infinite limit of the integral  at   and is 

denoted by the symbol 

                                                                    (18.2) 

The third case. If the function  has a singular point in the middle of 

the interval , then under the condition of the existence of both 

improper integrals and  by definition, we put: 

                      (18.3) 

The improper integral (18.3) should be understood as follows  

( ) : 

 

In the following, we will consider improper integrals in the form (18.1). 

Example 18.1. Calculate the integral . 

The solution. We will show that this integral is convergent: 

. 

[ , ]a b

( )f x x a

( )

b

a

f x dx



 0  (0 )b a  

0

( ) lim ( )

b b

a a

f x dx f x dx








 

( )f x

[ ; ]x c a b 

 
c

a

f x dx  
b

c

f x dx

      .

b c b

a a c

f x dx f x dx f x dx   

0 , 0c a b c      

     
0 0

lim lim .

cb b

a a c

f x dx f x dx f x dx



 





 



   

1

0
1

dx

x


 
11 1

0 0 0
0

0 0

lim 2 lim 1 2 lim 1 2
1 1

dx dx
x

x x

 

  



 

  

       
 

 

 

a 
b 

b-  

y=f(x) 

X 

Y 

O 

 

a b 
a+  

y=f(x) 

X 

Y 

O 
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Let’s introduce the concept of absolute and conditional convergence for 

second-order improper integrals. 

Definition. The improper integral (18.1) is called absolutely convergent if 

the improper integral is convergent 

                                                  (18.4) 

Definition. If the integral (18.1) is convergent, and the integral (18.4) is 

divergent, then the integral (18.1) is called conditionally convergent. 

To establish the necessary and sufficient conditions for the convergence of 

improper integrals of the second kind, there is a corresponding Cauchy Criterion. 

Theorem 18.1 (Cauchy Criterion). In order for the improper integral 

(18.1) to converge, it is necessary and sufficient that for an arbitrary number 

 it is possible to find a number  such that for arbitrary numbers  

and  from the interval , the inequality holds: 

.                                             (18.5) 

The validity of this Criterion stems from the fact that the concept of 

convergence of the integral (18.1) by definition is equivalent to the concept of the 

existence of the limit value of the function  at , which was introduced 

at the beginning of this material. 

 

18.2. Comparison signs for improper  

integrals of the second kind 
 

Theorem 18.2 (sign of comparison by inequality). Let the functions  

and  be defined on the interval , are not bounded on this interval and 

are integrable on any segment , . Then, if the 

inequality  holds and the improper integral  is 

convergent, then  – is also convergent. And vice versa, from divergence 

 comes divergence . 

The proof of this Theorem is carried out using the results of Theorem 18.2. 

( )

b

a

f x dx

0  0 
1



2


1 2
, ( , )b b   

 
2

1

f x dx







( )F  0 

( )f x

( )g x [ , )a b

[ , ] [ , )a b a b  (0 )b a  

0 ( ) ( )f x g x  ( )

b

a

g x dx

( )

b

a

f x dx

( )

b

a

f x dx ( )

b

a

g x dx
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Theorem 18.3 (limit sign of comparison). Let the functions  and 

 on the interval  be continuous, positive and have a singularity at the 

point x b . If there is a finite limit of the ratio of these functions 

 

then the integrals  and  are both convergent or divergent at 

the same time. 

It is possible to transform Dirichlet’s sign regarding the convergence of 

improper integrals of the second kind from the product of two functions  

and . The combination of conditions imposed on the functions  and 

 is given by the following Theorem. 

Theorem 18.4 (Dirichlet’s sign for improper integrals of the second kind). 

If the function  is absolutely integrable on the interval , and the 

function  is integrable on  in the usual sense, then the function 

 will also be absolutely integrable on this interval. 

Example 18.2. Investigate the convergence of the integral  . 

The solution. The given integral is convergent, since we have the inequality 

, 

and the test integral of the function  is convergent: . 

Example 18.3. Investigate the convergence of the integral . 

The solution. Since, under the condition , there is an inequality 

 and the improper integral  is convergent, then the 

given integral is also convergent, and even absolutely convergent. The same 

result could be obtained by Dirichlet’s sign (Th 4) by noting in the given integral 

( ) cosf x x  and 
3

1
( )

1
g x

x



. 

( )f x

( )g x ;a b

 

 
lim , 0 ,
x b

f x
k k

g x

   

( )

b

a

f x dx ( )

b

a

g x dx

( )f x

( )g x ( )f x

( )g x

( )f x [ , ]a b

( )g x [ , ]a b

( ) ( )f x g x

1

5

0
4

dx

x x


5

1 1
(0,1] : 0

4
x

x x x
   



1

x

1

0

2
dx

x


2

3

1

cos

1

x dx

x






(1, 2]x 

3 3

cos 1

1 1

x

x x


 

2

3

1
1

dx

x 
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Example 18.4. Investigate the convergence of the integral  

The solution. Consider as a test the improper integral  that is 

divergent. The integral functions  and  these two 

integrals have a feature at the point  Let us calculate the corresponding 

limit: 

 

Since the test improper integral  is divergent, the given integral is also 

divergent. 

Theorem 18.5. If the function  changes sign on the interval  and 

is infinite at the point , and the improper integral  of the absolute 

value of this function is convergent, then the integral  is also 

convergent. 

Remark. Test functions 
1

( )b x



 or 

1

( )x a



 are often chosen as 

comparison functions. We will show that the corresponding test integrals 

 and  both converge with respect to  and diverge 

with respect to . 

Let us prove the first statement that the test integral  is 

convergent for : 

1 1 1
( ) ( )

, 1;
1 1

( )
ln ( ) ln , 1 .

b

b

a

a b

a

b x b a
if

dx

b x b a
b x if


  










 





  





   
 

 
 

  
    

 

 . 

1

0

.
arctg

dx

x


1

0

,
dx

x


 
1

arctg
f x

x
  

1
g x

x


0.x 

0 0

( )
lim lim 1.

( ) arctgx x

f x x

g x x 

 

1

0

dx

x


( )f x [ , )a b

b ( )

b

a

f x dx

( )

b

a

f x dx

1

( )

b

a

dx
b x





1

( )

b

a

dx
x a




 1 

1 

1

( )

b

a

dx
b x






1 
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It is obvious that the limit  exists and is equal to  

under the condition  and does not exist under the condition . 

Therefore, the given improper test integral is convergent for  and divergent 

for . 

Example 18.5. Investigate the convergence of the integral 

1

3
0

1

( )
x x

dx

x e e



 . 

The solution. A singular point of the integrand function is a point 0x  . 

We use the previous Remark and set the degree   of the denominator, that is, its 

order relative to x . To do this, let’s represent exponents with Taylor’s formulas 

1 1 ... 2 ...
x x

e e x x x


        , 

where terms of higher order than the first are indicated by dots. Therefore, the 

degree of the denominator is equal to 
2

1
3

   . Hence we conclude about the 

convergence of the given improper integral. 

Example 18.6. Investigate the convergence of the integral 
1 1 1

0

, 0, 0
ln

b a
x x

dx a b
x

 


  . 

The solution. Under the condition 1x  , we have an uncertainty, after 

revealing which we will get a finite limit: 

1 1 2 2

1 1

0 ( 1) ( 1)
lim lim

1ln 0

b a b a

x x

x x b x a x
b a

x
Hospita

x

l

   

 

    
     
 

. 

Suppose that at least one of the numbers a  or b  is less than one. Then the 

point 0x  is a singular point of the integrand function. In this case, the ratio of 

the integral function to the numerator is equal (to the condition 0x  ) 

1
0

ln x
 . 

Therefore, since the integral 
1

1 1

0

( )
b a

x x dx
 
  is convergent, the given 

integral is also convergent. 

Remark. If the function  is the primitive of the integral function 

 and is continuous on the segment , then the Newton–Leibniz 

formula can be applied to calculate the improper integral of the unbounded 

0

1
lim

( )

b

a

dx
b x







  


 
1

1

b a










1  1 

1 

1 

( )F x

( )f x ( )F x [ , ]a b
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function even in the case when the singular point  lies in the middle of the 

segment . So, to calculate improper integrals in this case, we have a formula 

of the usual form: 

.                                        (18.6) 

Example 18.7. Find the improper integral: . 

The solution. We find the primitive  of the integral function  

and apply formula (18.6): 

 

. 

Example 18.8. Find the improper integral: 
33

35
0 ( 1)

dx

x 
 . 

The solution. The function has a discontinuity of the second kind at the 

point 1x  . We integrate and apply formula (18.6): 
33

33
2

5

35
0 0

5 5 15
( 1) (4 1)

2 2 2( 1)

dx
x

x
    


 . 

 

18.3. The concept of the principal value  

of an improper integral of the second kind 
 

Let the function  be defined on the segment  except, possibly, the 

point , , and integrable on any segment , as well as on 

any segment . 

Definition. If there is a limit 

, 

then it is called the principal value of the improper integral  and is 

denoted as follows: . 

( )f x

[ , ]a b

( ) ( ) ( )

b

a

f x dx F b F a 

3
2

0

cos

sin

xdx

x





( )F x ( )f x

3 3 2 12 2 2 2

2

0 0 0
0

cos cos (1 sin ) (sin )
lim lim lim sin (sin )

sin sin sin

xdx x dx x d x
x d x

x x x

   

  
  



  

  
       

2 3 5 222 2

0 0 0

2 2 8
lim sin (sin ) 2 sin sin 2

5 5 5
x d x x x

 






      

( )f x [ , ]a b

c ( )a c b  [ , ] [ , )a a c 

[ , ] ( , ]b c b 

0

lim ( ) ( )

c b

a c

f x dx f x dx








 


 
 

 
 

( )

b

a

f x dx

. . ( )

b

a

V p f x dx
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So, if the function  has a singularity at the point , then by the 

definition of the principal value of the improper integral we have: 

. 

Example 18.9. Find the principal value of the improper integral , 

. 

The solution. It is obvious that the improper integral in the usual sense is 

divergent. However, the principal value of this integral exists and is a finite 

number: 

. 

 

Tasks for classroom and independent work 

 

I. Calculate improper integrals: 

18.1. .     18.2. . 

18.3. .    18.4. . 

18.5. 
2

0

ln sin xdx



 .                                        18.6. 
2

0

ln cos xdx



 . 

18.7. .                                      18.8. . 

18.9.  
1 7

4

0 1

x dx

x
 .                                           18.10. 

1

0 1
x

dx

e 
 . 

II. Investigate the convergence of improper integrals: 

18.11.
 

.                18.12. 
4

2

0
sin

xdx

x



 . 

18.13. 
1

3

0

dx

x x
  .                                 18.14. 

1

0
2 cos 3

x

xdx

e x 
 . 

( )f x [ , ]c a b

0

. . ( ) lim ( ) ( )

b c b

a a c

V p f x dx f x dx f x dx








 


 
  

 
  

b

a

dx

x c


a c b 

0

. . lim ln

b c b

a a c

dx dx dx b c
V p

x c x c x c c a








 


   
     

     
  

10

3

1

x
e

dx
x



1

0

ln xdx

1

0 (2 ) 1

dx

x x 


30

2
2 4

x dx

x 


1

5 3

0

1
lnx dx

x

 
  

 


2

2

1 1

dx

x x 


0

6

1

ln( 1)x x dx
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18.15. . 18.16. . 

18.17. .             18.18.

.

18.19. .          18.20. 
1 2

4

0 1

x dx

x
 . 

III. Investigate the absolute and conditional convergence of integrals:

18.21. 
3

23
2

sin

( 2)

xdx

x 
  .    18.22. 

2

0

cos

sh( )

xdx

x



 . 

IV. Find the principal values of improper integrals of the second kind:

18.23. .  18.24. 
4

2

0

. .
5 6

dx
V p

x x 
 . 

18.25. .            18.26. 
2

2

0

. .
1

dx
V p

x
 . 

18.27. Investigate the absolute and conditional convergence and calculate 

the integral 
0

cos xdx

x



  using the well-known Fresnel integral: 

2 2

0 0

cos( ) sin( )
8

x dx x dx


 

   . 

18.28. Investigate the absolute and conditional convergence and calculate 

the integral 
3

0

sin xdx

x



  using the gamma function 1

0

( )
z

e z dz






 
   . 

18.29. Investigate the absolute and conditional convergence and calculate 

the integral 
8

0

cos xdx

x



  using the gamma function 1

0

( )
z

e z dz






 
   . 

18.30. Find the limit: 

4

0

3

1

lim

x

x

t dt

x


. 

2

0

ln(sin( ))x dx

x





1

2

0

ln

1

xdx

x


1 3

sin

0

ln(1 )

1
x

x dx

e






1 2

35
0

(3 sin cos 2 )

( 1)

x x dx

x






2

0

sin(sec )x dx





1

. .
e dx

V p
x



1

. .
ln

e

e

dx
V p

x x
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18.1. .     18.2. .       18.3. .  18.4. . 18.5. .  

18.6. .  18.7. 1 216 .  18.8. 4 .  18.9. 
l

3
.       18.10. 2 arctg( 1)e  . 

18.11. Convergent.   18.12. Divergent.          18.13. Convergent. 

18.14. Divergent.        18.15. Convergent.       18.16. Convergent. 

18.17. Convergent.    18.18. Convergent.       18.19. Convergent. 

18.20. Convergent.    18.21. Absolutely convergent. 

18.22. Absolutely convergent.  18.23. 1. 

18.24. ln 3 .  18.25. 0.     18.26. 
ln 3

2
. 

18.27. Conditionally convergent, 
2


. 

18.28. Conditionally convergent,
3 2

2 3

 
  
 

. 

18.29. Conditionally convergent,
7

sin
16 8

   
   

   
.  18.30. 

l

3
. 

2 e 1 2 16 3 ln 2
2




ln 2
2
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